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AESTRACT

Beginning with the equatlions for conservation of mass,
conservation of momentum, and conservation of energy for the

1
i
'

inviscid,! two-dlmensional or aXisymmetric adiabatic flow of

an ideal éas, similarity solutions -have been found which give
the flow field to ordér—52 abouf power-law bodies in the
hypersonic limit M - «, where ¢ 1is a body slenderness
parameter. Some years ago, the hypersonic small disturbance
equations were used to obtain "zeroth-order" similarity
solutions Tor flow over power-law bodies} The second-order
solutions, which reflect the effects of the second-order
terms in the equations, are cocbftained by applying the method
of small perturbaticns in terms of the body slenderness par-
ameter & to these zeroth-order solutions. The method is
applied by writing each flow variable as the sum of a
zeroth-order and a perturbation function, each multiplied by
the axial-variable raised to a power. When these expanded
variables are substiltuted into fthe flow equations, a
zéroth—order set and a perturbation set of four first-order
ordinary differential equations 1s obtained, and‘the axial
variation drops out. These eqguations are integrated
numerically Ifrom the shock, where the boundary conditions are
known from the Rankine-Hugoniot relations, toward the body.
The or’der’--é2 solutions which are obtainéd are independ-

ent of the slenderness parameter ¢ and thus are universal



1 .
in that they apply for all values of & for which &5 << 1.

However, except when the body power-law exponent is egual to
unity, the veloccity Tunctions, which foﬁm part of the solu-
tion, have singularities at the body surface. These
singularities are an effect of the entropy layer caused by
the nose bluntness. Since the singularities are not removed
by ‘any of several methods tried, the solutions can only be
applied away from the body surface. (It 1s suggested for
“future work tﬁat the singularitles prcbably could be removed
by applying the method of matched asymptotic expansions.)

In comparisons with the exact solutions for inviscid
flow over wedges and circular cones, the order—ﬁz similarity;
results-giVE-excellent'agreement for & 1less than about 0.4,
correqunding to wedge or cone angles up tc about 20°. Overf
an even larger range, the order—62 surface pressure predic-
tions are superior to the Newtonian pressuré law. The
order—62 reéults are a significant improvement over the
zeroth-order results for body angles greater than about 129,
In comparisons with expérimental shock wave shépes and sur-
face pressure distributions for 3/4-power axisymmetric
bodies, the order~62 similarity solutlons.give good results,
consldering that Mach nuﬁber and boundary layer displacement
effects are not included in the thecry. For body fineness
ratios near two, the effects of the order-62 terms are

significant only very near the body nose, whereas for a



.

fineness ratio near unity the orderuéa terms has a large
effect over almost the entire body.

The order—ﬁz similarity sclutions are developed for
infinite Mach number, but the derivaticn shows that they arei
compatible with shock-strength perturbation solutions,
which introduce Mach number effects. Also, while all results
obtained are for no flow through the body surface {as a
boundary condition), the derivation indicates that small
Oamounts of blowlng or suction through the wall could be
easily accomodated.. Finally, 1t 1s noted that a correlation
suggeéted by Hornung for the shock wave shape and body
pressure distribution can be applied exactly to all of the
flow variables in the c:n:‘draar--l:S'2 similarity scluticen form.

This finding suggests for future work a possible refinement
of the present derivation, using the local body or shock

wave slope as the small parameter.

e
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CHAPTER I. INTRODUCTION

A great deal of research has gone into investigating
~solutions to the small disturbance equations for hypersonic
flow. One area that has received particular attention 1s
that of self—similar solutions for power-law profile bodles.
While the effects of shock wavevstrength have been investi-
gated ih connection with these solutions, there apparently
have been no reported efforts to ipvestigate the effects of
neglecting the second-order terms of the complete 1nviscid
flow equations in order to reduce them to the small.distuf—
bance form. The purpose of the prsseht study is to detérmine
the effects of retaining these terms by using .a perturbatlon
analysis to obtaln second order 51m11arity solutions for
power~law bodles.

Since this dissertation will be concerned with finding
a particular set of similarity solutions of the invlscid
flow equations, it is important at the outset to establish
what is meant by similarity solutlons in hypersonic flow.
The similar sclutions referred to here are solutlons for
self-similar flows; i.e. flows for which the flow field
(éxpressed in suiltable coordinates) at any one position
along the body is the same as that at every other position.
(In the corresponding unsteady self-similar fiows, the flow
field in suitable coordinates at any one time is the same as

that at every other time.) Inviscid axisymmetric supersonic

1



flow over a cone with an attached shock wave is a classical
example of a self-similar flow and represents a particular

case of the similar solutions discussed herein. For the

cone, the flow fileld properties (eg. the pressure, the densi%y,
and the veiooity components) are themselves constant along
Vrays from the cone vertex. For the otﬁer power-law bodies,

the flow field properties are not constant themselves, but
similarity funptions describing these properties are

‘constant (to the order of the solution) along curved power-
law paths from the nose of the body.

The similar solution approach to solving the flow
equatlions is valuable because 1t allowsza reduction in the
number'of independent variabies in the prbblem‘ In particular,
for hypersonic flow about power-law bodies; the similarity
approach reduces a system of partial differential eqﬁations
to a system of ordinary differential equations. @As noted by
Hayes and Probstein (1), generally these flows occur only
for a self-similar fluid (the most practical example éf which
is a perfect gas with a constant ratio of specific heats)
and a self-similar shock wave, i.e. one having the same
density ratio écross it at every position.

All of the early investigations of similér solutions
related to tﬁe present problem were concerned with unsteady
flows. Early in the Second World War, Taylor (2) developed

a similar sclution for the flow behind the spherical shock



wave produced by the instantanecus release Qf energy at a
poirt (e.g., an atomic expldsionj. Sakurai (3,4) generalized
Taylor's approdach to‘obtaih solutions for cylindrical and
planar sbocks as well, He also introduced perturbation
analysis as a means of obtaining solutions for more moderate
shock wave strengths. The equivalence of these unsteady flows
to steady flows in one additional space dimension was pointed
out by Hayes (5). This equivalence applies fo the inviscid
.flow equations reduced to the hypersonic small disturbance
'form, as derived by Van Dyke (6).

Lees (7) found that there are self-similar flow fields

for bodies having power-law profiles, and Lees and Kubota

(8) determined the fange of power-law exponents for which
the similarity holds. Kubota (9) obtained numerical solutions
for this case (herein called the "zeroth-order" case); he
also applied a perturbation in the strong shock parameter (as
Sakurai had done for unsteady flow) and numerically cbtained
first-order similar solutions for moderately strong shock
waves. Mirels (10) computed additidnal ahd moré accurate
numerical results for the zeroth-order and moderately-strong
shock wave cases. He also derived approximate analytical
solutions for these cases.

| The parallel but independent work of investigators in
the USSR has been thoroughly described by Hayes and
Probstein (1). Beginning at ebout the same time as Taylor,

Sedov (11) studied the intense spherical explosion problem



in a more general Torm and de&eloped an analytic sclution
for it (12). Grodzovskii (13) and Chernyi (14) applied the
unsteady results to the steady hypersonic flow problém.
Stanyukovich (15) and others investigated a number of
related probiems. | '

All of the important developments in the use of hyper-
sonic small disturbance theory to obtain solutioné for power-—
law bodies were treated in a unified way by Mirels (16), who
added an analysis of perturbed powér—law body shapes. More
"recently, Freeman (17) investigéted the effects of the entropy
layer caused by the nose bluntness of the power-law bodiles
and determined the power-law expoﬁents below which the
entropy-layer effects predominateQ Again independently,
Sychev (18) developed a correction to the power-law body
shape to account for the effect of the entropy layer.

A few experimental investigations of the flow field over
power-law bodies have been made. Kubota (9) compared his
theoretical results to surface pressure distribution and
shock wave shapes measufements for 2/3- and 3/4-power bodies,
obtaining good agreement for the more slender bodiles.

Peckham (19) measured pressure distributions and shock wave
shapes for a series of power-law bodies, some of which fall
in the similar-solution range. Freeman, Cash and Bedder (20)
and Beavers (21) also presented detailed shock shape data

for series of power-law bodies, registering some disagreement
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with EKubota's results. Spencér and TFox (22) present aero-
dynamic drag and other data for several powérwlaw bodies
over a wide Mach number range. Ashby (27) presents aero-
dynamic data for a similar Series of bodies cver a range of
Reynolds numbers at Mach 6, and Ashby and Harris (28) use
method of characteristics and boundary layer computer pro-
grams to show the important effect of boundary léyer transi-
tion on the total drag of those bodies.
Townsend (23) appiied the zeroth-order solution of
. Kubota and Mirels, with their shock-strength parameter per-
turbation and a boundary layervdisplacement correction, to ”~
the problem of estimating the forces and moments on a half-
axisymmetfric body under a thin, flat wing. In order to study
a range of configurations at a moderately hypersonic Méch

number, Townsend applied his method to configurations which

are marginally slender, (l.e. to coﬁfigurations for Whichj

the errors arising from bedy thickness are small but not

negligible). This type of application points up two
reasons for seeklng solutlions which include the effects

of the second-order terms for body slenderness iﬁ the flow
equations: (1) to assess the error caused by making the
small disturbance assumption,-and (2) to improve the

accuracy of calculations for mafginally slehder bodies.



When compared with ekperimental data for axisymmetric
power-law bodies and for wing — conical-body ccnfigurations, 
Townsend's method gave good agreement where the baslile
assumptions were satisfied. An example serieg of computatiogs
with variations in the principal parameters at a full-scale
flight condition showed that varying the power-law exponent
haé a greater effect on longitudinal stability and trim than
on the lift-drag ratlo, The computations for Mach & géve
higher maximum 1ift-drag ratios, higher drag coefficients at
zero 1lift, but essentially the same stability characteristics
as théir counterparts for Mach 12,

In the present study the second-order similarity solu-
tions‘wére‘obfained'by a pefturbation method. This method
used expansions of the variables in terms of a small parameter
to obtain higher-order solutions as perturbations from a
known zeroth-order solutidn. The approach was very similaf
to that of Sakural (4}, Kubota (9), and Mirels (16) in their
first-order determinatibns of the effects of shock wave
strength; but, the small parameter used herein was a body
slenderness parameter rather than the shock strength parameter.
Van Dyke (29) describes the application of perturbation
methods to fluid mechanics, and Van Dyke (30) sﬁows how, in
favorable cases, such solutions can be extended to improve

convergence when the pérturbation quantity is not small,
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The importance of the réSults £¢ be obtained from the
present study lies in their practical application. The
principle area for this 1s in estimating the aerodynamic
characteristics of generalized configurations (e.g.,
Townsend's (23) family of wing-body combinations). By
improving the results of such studies and by better defining
thelr 1llmits of appllcability, the present work éontributes
to their usefulness in suggesting designs (or parts of
designsj for such hypersonic vehicles as transports or re-
_entry spacecraft.

The remalnder of this dissertation will describe the
development of the solutions and present the results.
”Chaptef iI.gives the theore£i0a1 development. It goes
through the transformations of the flow equations required
to put them into siﬁilarity form, discusses the resulfts of
keeping terms of different order, describes the application
of the boundéry conditions, aﬂd develops an alternative
formulation of the problem. Chapter III presents the general
scheme for solving the équations and deals with the diffi-
culties which arise. Chapter IV discusses the results and
their region of validity. Chapter V.gives the concliuszions
reached as a result of this study. The Appendix describes
an approximate analytical solution used near the body sur-

face, where the equations are singular.



CHAPTER ITI. THEORY

A. Transformation of Basic Flow [gquaticns

This section will show how the basic flow equations can
be transformed to obtain a separation of variables for the
case of hypersonic flow over péwer~1aw bodies. The starting
point for this process is the system of steady, two-dimen-

sional, inviscid flow equations for a perfect gas 1n physical"

~variables:
R
Continuity: opu , 3pv . o PV _ 4
X or T
, : - du , - 91 , 1 9p _
Longitudinal U o= + v T + 5 3% 0
momentum: : :
EEE——— - - [ . . > (1)
Lateral - u %% + v %% + %% =0
momentum:. P
. - 9 - 3 Jfp\ _
Energy: U we + Vo el M 0 J
P

The constant o 1in thé continuity equation has the value
0 for planar flow (Cartesian coordinates) or the value 1
for axisymmetric flow (cylindrical coordinates). The bars
over the‘variables indicate that they are dimensional

quantitites.

Normalization. The initial treatment of these equations

follows that of Kubota (9) (also covered by Mirels (16)),



except that no terms are dropped. Xubota showed that for
slender bodies in hypersonic flow the variables can be norma-

lized using the expressions:

_ _ _ ™
X iy ’
x:—,r:—--:-,p: —
T 8% 52Pmui , S )
2
- 5 -0 -
o Vv
p=%—_3 u = o2 ’V=E'ﬁ_'
% §"u, o y

The 6 1is a body slenderness parameter (to bé discussed
later) introduced so as to make the dimensionless variables
of order unity. :These vafiablés are substituted into equa-

tions (1) to obtain the normalized flow eqﬁations:

Tty: 2 3pu , 3p . 9pV v
Continulﬁy. 8 st osx t o0 +o & 0
1tud] 2, 0u , du . du  13p_
Longltud%nal §5u 5% + o + v = + S 5y = 0
momentum:
) (3)

" Lateral 824 %% + %% v %% + 1 %g -0

momentum: . p

Energy: (qu%z+g—x+ v %F) (Ef) =0

° J

Note that each of these equations contains a leadlng term in

62

. If the body were sufficiently slender, the order—62 terms
could be dropped, 1eaving the hypersonic small disturbance
equations used by other workers. . For the present study,

however, the equations are retained in the complete form.
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Similarity variazbles. The next step is fo put Cthe flow

variables into similariéy_forms. Still follewing Kubota (9)si
. these will be found by comparison with the flow through an
oblique shock wave. The normalized flow'variabies.juéﬂ

behind an oblique shock are (24):

- pS ) 1 . p
Pg 5= -2
G paouoo

)
GgyMi Peo
1 [2YM§ sin26S - (Y-l)]
N ¥ 1
Yd M. _ Y.

2 p)
_ (Y+1)M, sin“o_

(y-1)MZ sinfe_ + 2

g -, ; ;o S —2(m? sinees - 1)
u o= 2L { 8] .

o
|

Dqtﬂ

g8 i

S 5% 6% \Uoo 5 (y+1)M°
e 2(M% sin®e_ - 1)
_'s  _ 1 w ]
Vs TF_° % 5 cot O
(y+1)M_

If the shock wave shape 1ls glven by R(x)? its slope 1is

=r,zy - GR dR
t = =11 - . '
R'{(x) = ax - ¢ gx = SR'. The shock wave angle ©_ 1is
related to slope by tan @ = R' = 6R', from which
25y 2 ‘ : |
sin29 = SR _ . Putting these results into the éblique
5 14 §%R? :

shoek relations gives (for R' of order unity): :

2 R'Z _y-1
Y41 2,2 2y

i

n

P
S 1+6°R!

y - 4

‘ -—
R 1

}-...J
|

2,2 2_ 42 ) (ua)

= ——— R . cr———

v+1 y+1i + 0(8

—=
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(4b)

(lc)

-(4d)

DS iy
- lt% 2(y+l% 62 + 0(64)
(y-1)" R'
u =!— 2 R'Z ~ €
5 y+1 1+62R‘2
_ 2 o2, 2 2o,k 2 4
2y RZ e 2o R e g e v 008
g = 2 R! e
s T ¥ |7, 22 K
- 2 ot _ _2_ 2043 _ 2 € 4
= T R - T SR - ip Tt 0080
Here ¢ = 3‘2 is a shock strength parameter; as € =+ 0,
it ' '
BS +1 | -
==+ %;T, the limiting value for shock wave strength. Using

0

these equations as guldes, the flow variables are taken to

have the forms:

o
f

o
|

<
i

F(r)

= @O(r)

io(r)

$O(r)

4

2 2 = ~
R' + 8% F (r) R'' + aFl(P)

+ 6%,(r) R'Z 4 ef, (r) (R

2

R' + «5202(1‘*)111'1l + e Gl(r)

R' + 5252(r) R'3 & ¢ $l(r)(R')

-1

g
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At this point, in corder Lo get an expression for the
shock wave shape, consideration 1ls narrowed to flows about
power-law bodies. Under the hypersonic small disturbance

.'
.

assumptions, a power-law body (Fb ~ ¥™) produces a power-~law

1 _ _ _
shock wave (R ~ xm) for §%E <m < 1. (8ee Lees and Kubota
;(8).) Specifically, for &2 << 1 and ¢ << 1, the "zeroth-

H ' T F —\TI1
%rder“ shock shape about a bhody fg = %F (%) is given by
‘ -\ym .

9 = 5§ (% ;3 or,.in normalized coordinates, the shock shape -
T

L

_ ebout a body 1y = §%§ x" 1s Ro.= ™ (Figure 1, parts'
ﬂa) and (b)) Note that for m=1 the body is-a wedge (for g = 0)
%r a cone (for C,; 1), both of whlch are known to have straight -
%hock waves and therefore satlsfy the above relatlons For
ﬁ'< 1, the power—law body has a small blunt nose, so that the
ehock wave is detached. Consequently, this type of relation
%etween the body and the shock cannot hold in tﬁe immediate
%icinity of the nose. The effects of nose bluntness on the
flow downstream are confined to a thin layer near the body

Eurface. "Freeman (17) found that the effects are less than

' -2 + e , :
ordern M” _.for m > (§£0)$12 . (For vy = 7/5 this amounts
: 24 _ 24 _

to 3T 77 for o = 0 and to 3g * .63 for ¢ = 1).

E The expression for the zeroth-order shock wave shape

Eerves to define the slenderness parameter &. That is,

H
ﬁo( = (I) evaluated at X = £ gives the relation

Thus, & is the tangent of an angle defined by



87 —
A
T oaf
=
o
w
o
E
@ ) - i
"5 Body, T7 57
0 - - -
0 : Z
Longitudinal distance, %
(a) Physical coordinate system,
I |
o L}
‘E“ ZSf ~ Shoch, Rg=x™
5
(]
S : i
rL=ge k™
s Body, 'b™ Zsf
&
©
-
0
0 : _ . 1
Longitudinal coordinate, x
(b) Normalized coordinate system,
i Shock, =1
F: 7 Body « 5;=17b
@ nb
°
A=
b
(=]
<
(5
©
o
o
-l
0
0 _— 1
Longitudinal coordinate, &
(¢) Similarity ccoordinate system,
Power-law and Zero-order Shock in Physical and

Figure 1.

. Transformed Coordinate Systems.
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the shock wave position (Figure 1(as) and is, in fact, a
"mean shock wave angle" parameter. However, since the

zeroth-order case implies M+ = (as will be seen), the

R

shock lies near the body so that the shock wave angle and

body slenderness are closely related. The definition of &
| : , ‘ -
is made in terms of the shock for convenience, since the

!
solutions are to be found by integrating from the shock to
the body.

i
| To aid in the separation of variables, a shock-oriented

coordinate system is now introduced (Figure 1(c)). This

éyStem'has

E
b e o -g=x ana =L : (6)
: ' o |

i

0 that r = nRO = nxm = ngm. The body surface 1s then

_ m - 1 '
b = nbE s Where Ny = 557°

The shock wave shape to be used in equations (5) is the

%erothuorder shock with Kubota's (9) shock strength pertur-
bation and a separate perturbation for the body slenderness.

it is taken to be

R(x) = R_(1 + §° 2

2 )

o -
1 t

3280 + ealm RO

!

where the constants ay and a2 are to be determined as

part of the solution. (The factor m?  1is included in the
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last term of this eguatlon so that it conforms to the usage

of Kubota and Mirels.) Putting in R, = £, |

5 R(E) = Em[l + % m?g 2t ealgg(l“m)] (7)

|

|

j Substituting the derivative of equation (7) into equa-
?idns (5) and ordering the terms by powers of 6§ and ¢
éive expressions for the floﬁ variables in the following form
‘knéglectingrférms of'ordef 64 énd of order 52):

l

i

P(E,H) = Fo(n)m2 5_2(;‘—m) + 52 Fg(n)mu E—li(l-m) \

e 2
e e v e eFl {n)m

e T e —

Vo)
e = v (mm? g2 2y (it g (3mm)
| + Svl(n)m2

v(E,m) = g (mm g7 4 52 (nymd g3

+ e¢y (n) g1

i
t
§
!
t
i
!
i
i
i
i
i

?he relations between the funections of n and the functions

of r 1in equatilons (5) are not needed since it 1s easier to



o »
_ |
work with equations (8) directly. These expressions are now
ready to be substituted into eguations (3) to obtalin the

transformed flow equations. In taking the derivatives of

these variables it is necessary to note that, whereas £ = x

1 -
gives the simple relations %% = 1 and %% = 0, n = rx m
: :
L an - -m-1 _ _ mn n . Mmoo
glves 3 ~mrXx =~ I and 5 - X = £ ; thus
~~
ax X 9& 3xX 9on 3t E 9n
and & (9)

9
ar ~ 3r 3F ' 3r 3n  ,m ¥

o

- Equations in similarity variébles. When the expressions

‘ngwéreuédbstiﬁﬁted'into_the normalized flow equations (3),

1

i S : .
these become (away from the nose £ = 0):

g
n

bontinuity: [w0<¢5 + - 9.) - (n - ¢O)w5] mg™t

| ' | 1-
S T R N URE D

- (n - ¢, )95 - nv ¥l - [nvé + 2 (lém) vo] ¢Of m3£—3+2m1

| ‘0 . ) (10a)
! ! — 1 -

) ng"% "o T Yol t [‘bo TR (“"m“';J ¥y

(n - ¢o)¢i }%‘glﬁ

2 4 o(s") = 05

o
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Lbngitudinal momentum:

) o o
kn - ¢0)Vé + 7 Ei + g(liﬁ)(vo + ai;lm3€~3+2m
i oy .
? 62%(n ~§¢O)vé + n ﬁg + ﬂ(lﬁ@)(ve + Eg) - v,

i © . o ,

{ ' (10b)
f‘ié’[ﬂFé + 2(;‘1-;—@)1“0] Yy + oV, I‘nvc")-+ 2(“1‘%&)\20”m55_5+4m
Yo | .
| F? :

+§{(n - ¢O)ui + ﬁi - l§1%Fé + 2(lﬁmjpélwl.
i °o ¥,
| .
- v5¢1{m3a“1 + o8t = o;
Lateral momentum:
e o F‘ . l 2 2+‘
!r[(n - ¢0)¢(‘) -IF% (_I%nl)(boil £ m
; FI i3l
| 2 ' ._2- .__Q ' . _l___-lll
31-6 {(T‘I ¢O)¢2~—¢0+ 5 Vs _[¢0_3(m ]¢2

Y .
| © (10c¢)
o+ s fatintn
% © m ‘7ol o
i . ,
i} F! F! . _

+ S{(n ¢0)¢i - "% wl - l}é (lﬁﬁﬂ ¢1§m2£ m
; © wo
]ﬁ R
+ 0(s") = o;
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Enera . ( - )(r _‘E_é. . 2) - 2(:‘]'_'“]7_’2 rng l
By it wo K ¥, FO m
wt F! w wl’ F 1
+8%0n = o) [(v 52 - 52 - (v 52 - 50
© o o] ¢2 F
o 0
w F lp! 1 !!
2 o) 0
2( Ty (y 75 - 5) = (v 72 - =2)¢
Yo Fo o] Fo 2
[ 01 F 2 3 (104)
2(= )__n(,f_p_,.,_g)]v m>g =" ‘ -
. o  Fo © :
lpl FT ww! F F'I
e{(ﬂ - ¢ [(y o - (- )
o] o} wo _ Fs
- v By F! oy
2Dy (y 2 - by - (v 2 - >¢ }ma My oo(st) =
w 1
o] 0
hese equations are seen to be ordinary firs t o:der differen-
tial equations, linear in the derivatives of the functicns

—‘d"‘"'l;B B B T Rt FEC

defining the pressure, density, and velocity fields. It is

b
i

hotewdrthy that although ¢ appears to the first power in
the normalizaticn of variables (egquations (2)), only the even
powers of & appear in the final form of the flow equations.

i
Fhus, while the solutions to be found are of second order

in the body slenderness parameter &, they could be considered

i

of first order, in 5. To avoid any ambiguity they will
éenerally be referred to as order-62 solutions, Physically,
: | .

the absence of lower powers of 6 indicates that the error

due to a given body thickness is less at hypersonic speeds

épan/at lower speeds, where terms of order 6§ or 63/2 appear

(Van Dyke (6)).



B. Discussion of Orders of Magnitude

As a result of the normalization procedure (equation (2)),
the variables p, p, u, and v are of crder unity for slender
bodies in hypersonic flow. The similarity variables in |

quations (10) are also considered to be of order unity, but

—

thls assumption must be tested by the results obtained. The
62

gevelopment so far has been based on and € Dbeing small

l
barameters. This section will consider their relative

|
sizes.
i

f Zeroth-order equations. If §
|

that all terms containlng either one may be neglected

2 <« 1 and e << 1, so

equatlons (10) are reduced to the zeroth~order equatlons

l

’ ™

! ,

; s s £ . ! g — — =

Fontlnulty. v (ol + ; ) (n $50¥8 =0

E Fl l-m F

Longitudinal (n = ¢ _)v' + n =2 + 2(=B)(y_+ 2y = ¢ _
. o’ o V] m 0 Y

momentum: : : o o > (11)

‘ . B! 1-m

; . _Q_ =" =

%ateral momentum: (n - ¢ )¢é Ve + ( — )¢0 0

! 1 '

B . - 8 . 0y _ 5 d=my _ o,

Energy (n ¢, (v 7 Fo) (= J

f
i
These equations represent the case first studled by Kubota

(9), they are the same as his equations except that he

F

omitted the longltudlnal momentum equation, which is

ncoupled from the others References 9, 10, and 23 contain

R Ty

results of numerically solving Kubota 5 equations, which are’

a special case of the present more general treatment.
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Equations (11) contain only one parameter, the power-law

.

exponent m. Thus, for two-dimensional flew (¢ = 0) or
axisymmetric flow (o = 1) of a given gas, the similar solu-
tions F_(n), v (n), v (n), and ¢_(n) each form two

familiesgof "universal functions" depending only on the
power-law of the body.

As was mentioned in Chapter I, the simultaneocus applica-

tion of the conditions leading to these equations imposes a

2 << 1 and

stringent condition on the Mach number; viz., 6
1

3

E = << 1 requires M_ >> 1. This relation between e

2

M,
§

and is 1llustrated in Figure 2, where part {(a) shows,

for example, that € < (1 and 62 < .1 are both true at
‘Maeh 12 oniﬁ‘if_ué'z ER Noﬁe,'in addition, that dfopping
the terms In e removes all Mach number dependeﬁce from the

equations, which really implies M_ - < and 1llustrates

Hayes' "Mach number independence principle” (ref. 1).

Order-¢ equations. If, in equations (10), the terms in

62 << 1 are dropped but the terms in & are retained, two

systems of equations can be obtained by setting the zeroth-
order and order-e terms separately equal to zero. The
zeroth-order system is the same as before; the order-¢

system is:

Continuity:

+ 201y = 0

1 g [ 1 0
wo¢i * (wo * n ¢0)¢1 - (n - q)ONJJ_ + [¢o + n %

{(12a)
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. B!
Longitudinal momentum: {(n ~ ¢o)vi + n ai
© (12b)
sl NPy 4 2( )F Y. = vl = 0 |
IJJ2 1 o 1
© :
ﬁateral momentum: f !
i . : ) !
t ' Fi Fé ' 1-m :(120)
i(”'%)d’i"rp“*“z‘\“l'[%*“m”]d’l‘o |
I o . ¥, - . , (
‘pr' P! wl ™ :
Energy: (n - ¢ ) |(y 72 - =2 - (v 2 y; - S F,) f
: o] ¥ F 2 71 21 :
: o ¢] Y ¥ ,
| ' ° © 1 (124)
_ 1 ' , v .
TEC. Ve N SO J PO ’
‘ UJo o) o o) ,

hese equatlons are the same as Kubota's (9) first-order

I

Perturbatlon for shock wave strength, except that (agaln) he
;mitted.the longitudinal momentum equatlon since it is un-
?oupled from the rest. They can be solved numerlcally using
%he results of the zeroth-order solutions. The resulting

%imilarity functions F,(n), ¥, (n), vl(n), and ¢1(n) are,
i

;ike the zeroth-order functions, universal in that they , .

aepend only on m as a parameter., References 9, 10,‘and 23

contain the results of the numerical solution. Applying this

; :
shock wave strength perturbation reintroduces the Mach number
i : -

3 .
pependence and somewhat relieves the reqguirement that . M+

ksee Figure 2(b)), but thé_body must still be very slender -

|
ﬁn order that 52

:
i

<< 1,



Order~6£ eguations. If the terms in 62 are kept in

equations (10) and all higher order terms are dropped, a case
1s found which has not been studiled previously. This 1s the

case of present interest. Since general similarity solutions

| : .
are being sought which do not depend on the particular values

;f § or €, each of the three major terms in each of the
four conéervation'éqﬁétiohs.muét BeAséﬁaPafely edual to.zero;
As a result of observing this, the terms can be separated into
%welve equations'in the ﬁweive unknown functions Fo’ wo,

,:uo, $» Fp» Vys is 815 Fou ¥y, vy, and ¢, Elght of these
equations are the reroth-order and order-e systems of equa-

tions ﬁound before. The remaining four are the order—62
équations:
E TR ) ' g - -
pontinuity. Poop + (W) + - V)¢5 (n - ¢, 093 L
' ' {13a)
; ¢! + 9.¢ - 2(1:E Y, —nv P! =inv! 4+ 2(1:E) v oig, = 0
o] n o m 2‘> o' o O m olo
f B!
Longitudinal momentum: (n - ¢O)vé + n Eg
a
. l-m Foo 1 1-m o
: = L} - = ' == - !
PR T g - [nFO + (= )Fo] Yy = Vi, (13b)
v (o} :

H

: 1-m
t e 1
+ vo[nvo + 2( ) vJ 0



, FY F!
Lateral momentum: (n = ¢.0¢) - a: + _% Vo
; o v
° (13c)
f[¢é'3<1‘§lﬂ]¢2+n¢*+( )¢ 0
| ¥y Fl y'y, FIF
Energx: (% - ¢O)[tY E@ - ﬁé) - (¥ 022 _ 0224
| _ ° © Yo Fs .
o v Fy - (13d)
2 (=8 )(Y E— - ﬁ;) -y 7. F ) b, 5
|

Vo _Foll |
PR - g2 - F v = 0

s f e i e e i

i | ‘ ;
Except for additional terms corresponding to the order-9
?erms retained in the normalized equations (3), these equa-
Fionsﬁaré Vefy similar to the order-e equations; many of

?he coefficients aré the same, and the only body Shape’
?aramefer that appears is m. The similarity functions
?2(n), wz(n), vz(n), and ¢2(n), which form the solutions to
these eguations, will therefore be familles of universal
%unctions‘in the same sense as the other solutions are.
?urthermore, Just as the order-¢ equations are independent

of the body slenderness perturbation (in 62), these equa-
#ions are independent of the shock wave strength perturbation
%

kin €). Thus, application of these equations to determine

the body slenderness perturbation of the zeroth-order small

disturbance similar solutlions neither requipes nor excludes

épplication of the equations for the shock strength
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perturbation at the same time. Figure 2{(c) shows that with

both perturbations applied the expected error for

a given Mach number and body slehderness_is much less than

-%ithout them (Figure 2(a)) or with just the shock strength

perturbat on (Figure 2(b)). |

g Since the order-e solutions ha#e been found previously

?nd are not needed to get the order- 62 solutions, they will

5ot be consldered further. All subsequent development will
b

éssume e < 82 50 that e° < 6% < §F << 1; all terms of

order & or smaller will be neglected.

|

P '

E C. Boundary Conditlons
| ,

| This sectlon will deal with the boundary conditions at

Frvaie e o R

the shock and at the body surface and with the 1mpllcat10ns
pf the body boundary conditions on the solutions near the

:
surface.

Shock wave. The boundary conditions at the shock wave

are determined by the obligue shock relations (equation (4)).
ﬁsing the expresslon for R{£) (equation (7)) these rela-

tions become:



na
(@]

" 2 2 "2(1—m) 9 g 3H':‘g
py = M‘z’+l mo + § T [2(“—111‘ ) oa,
2 21 y-11.2 4
+ & —12(=) a m- + 0(8 )
Y.‘H—[ m 1 2Ym2J
i
|
_yrllo 2 y+ly 1l .2(1-m) 4
PS Yy-1 € Y+1 (Y—l} m2 2 +00en)
g .
o2 2 .-2(1-m) .2 2 [,,3m=2 4 o=4(1-m)
::JS = m m 3 -~ 8 YL [2( m ) 8.2 - l]m £ >(l}4)
| _
e ey - e v ot
) (1-m) 2 2 [,3m-2 3 .-3(1-m)
§vs T oy+l £ + 8 v+1 [( m ) an - l]m & .
R P 1 Tem -, npoly L
Lt ;:i‘ﬂ"ﬁrﬁ 8y - ;@]m-i + 0087 - /

bomparing these equatlions term-by-term with equations (8)
determines the boundary conditions for the similarity func-

tions at the shock wave (n = n_):

5
P (n) = <51 Fo(n ) = o5rl2(58)a, - Y21 ]
o"'s yv+1 1%'s v+1 m 1 2Ym2
+1 1 2 1 »

w'o(nS) = _;](r_q Yy(n ) = - 37:“1‘ -1 _2 i(152)

2 2 .2 1 f“le)
Volng) = - g vilng) = - gpl2(§hay - -
dolng) = 57 o) = il (Fhay - L) J
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Fo(ny) = piplati=oa, - 1) a
| |
Volngd =0 L (150%
plng) = - gErt2CaDra, 3 |
‘ |
0,(ng) = L (GDay - 1] )

m
i
§

Note that the shock wave displacement constants aq and a,
ére initially ﬁnknown. They depend on the parameter m ;and
%re td be found in sgtisfying the boundary condition at the
%ody surface as part of the solution of the flow equations.

[ I A JS—— [ . —— T

!
|

Body surface. The boundary conditions at the body

4
1

?urface are determined by the mass flow thfouéh the surface.
;f Gw is the velocity and Bw is the density of the flow
but through the surface (Flgure 3), the mass flow balance
%ormal to the surface 1s given by:

¥, cos #© sin 8, = p.V (16} .

| PrVp b ~ Ppp

Or, in the normalized variables:

L o 2 1
4 ‘ v, = @ Vv, osec eb + (1 + & ub) @Itan Gb (17)



i

E‘“Figure.B. Vector diagram of flow at the body surface.
o BEBRLE 20
i F—)w Gw
where o = — V., = = Now
! Py * Tw su_ ‘
| dr 3

_ b _ -(1-m)
‘ tan eb = g% = anmﬁ 5
and :
: 1/2
, . 2.2 2 —2(l-m)]
| -
| sec B [l + & ng Mmox 7O _ > (18)
; -

1 —2(1-
=1+ 3 ngg m2 X 2(1-m) + O(Gq).
_ A

!

{

in the similarity functlons for u and v

(8) gives the relation

Putting these into equation (17) along withlthé expressions

from equations
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ﬁo(nb) - ﬂﬁ]mﬁﬁ(l—m) - av, ‘
: 2 | ]
+ 62{ l:q)g(nb) - nbvo(nb)} m3g“‘3(l-m) _ uvw _é_p_ ng—z(l 1 ) (19)
| |

e ¢y(n,) me” ) 4 0tst) = 0

f the flow through the surface has the particular form

= ¢ mE_(l—m), where ¢ 1s a constant, the boundary

<

S = R N
= .
=

onditions at the body surface are (from eguation (19))

¢O(nb) - le - ¢ = 03

¢, = b s - (20)

While the development of these boundary condition shows that
hass flow through the surface can be accommodated without
‘aifficulty, the rest of this dissertation will be restricted
ﬁo the no mass flow conditions, ¢w = 0. The resulting

bOundary‘conditions are

3 %

1
i
!
i
!
1



LA
n

¢O(nb) - Ny = 0,
.¢2(nb) - nbvo(nb) = 0, : (21)

E ¢, (ny)

1
(o]

Initial magnitude checks. These boundary conditions

i
|
|
|
%
i
3
H
?
i

can be used with the flow equations to provide some initial

i .
checks of the order of magnitude of the similarity functions.

|
%S stated in Section II-B, these functions have been

i
assumed to be of order unity. From the boundary conditions

ét the shock (equations (15)), this assumption appears
i . . . , . .
justified there, for y not too close to one and if ~a, 1s

hot too 1érge, except that wg(ns) = (. Having a function
{ .

i

become much less than one does not invalidate the procedure

ﬁsed in getting the equations so long as the functlon does

not appear as the denominator of terms that one dropped as

being negligibly small, i.e. of order 6”. Neither wz nor

ény other order-—ﬁ2 function is in the denominator of any
term that is dropped.

Solutions to the zeroth-order equatlons given by

b
?ubota (9) indicate that F and ¢ remain of order one
%rom the shock to the body but that wo goes to zero at
%he body surface when m < 1. This result could affect the

#a}idipngf the solutions in the ‘reglon where wo is small
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since wo does appear in the denominator of a number of
terms of equations (210) -~ (13). One of these 1s the zeroth-
order lateral momentum equation (11). Applying the boundary
condition ¢O(nb) - n, = 0, this equation becomes

i

: )

. ey - 5
i : o°'b ,

) Ny s

<From which Fé(nb) = . The zeroth-order longitudinal momen-

tum equation (11) multiplied through by y_ is
_ : ! '
(n - ¢,) g vi + nFl + 2( )(v v, t Ty ) =

sing ¢6(h£) - Ny = 0 and Fé(nb) = G,'this becomes

- Gp e e i g et © 4 ne
m s

vo(nb) wo(nb) + Fo(no) =0 . (22)

?ince wo(ﬁb) =0 and F_(n ) # 0, this requires v >

as n > n . Thus there is a (nonmphysicél)-singularity* in the
51m11arity solutions at the surface of the body n = nb'
% One p0551ble way to avoild the 51ngular1ty at the body
%urface is to reformulate the problem. The fact that Vowo’
ﬁhich remaégs finite as n ~» ﬁb, is the zeroth-order

Eimilarity form of the longitudinal momentum suggests that

¥Kubota (9) and Mirels (10,16) do not encounter this problem
because they omit the variable v entirely. It only occurs

. in the longitudinal momentum equation, which they do not
use, prefering a Bernoulli equation for the velocity.
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using momentum components, instead LI veloeclity components, as
fundamental variables might remove the singularity. This

approach is pursued in the next section.

D. Momentum Variable Iormulation

1

A3 was noteﬁ in the previous section, the zeroth-order
}ongitudinal velocity similarity functilon Vs 1s singular
%t the body surface. However, the product wovo remains
%inite, which suggests that a reformulation of the problem
;n terms of new variables might remove the singularity and
éllow the numerlcal integration to.proceéd'all ﬁhe way to
the body surface. The variables chosen for the reformulation
.are the longltudlnal momentum ou (whlch is expected to
;égave like wovo and so remain finite at the body surface),
%he lateral momentum E?; the pressure p, and the density
;. In terms of these variables, the inviscid flow equations

(1) become :

!

bontinuity: P . 9PV PV _ ' (232)
f 5% T 3 T 9y =0 :
Longltudinal momentum:

I

— - 3pu _ — 3p ~— - 3pu _ — 3p ~2 3p _ ;
pulp 33 - pu 3x) * PVv(p 5= - pu 3=) + 0" 33 = 0 (23b)

4
I
1 : : ';
3 a : . ¢
3
i
i
H



Lateral momentum:

= 3PV = 3P — - 3pv  -— 3p -2 3D _ .

pu( ax P Bx) +opv (o ar PV Br) e ar 0 (23c)

| - |

| _— , — 5 | i

Energy: (pU 2= + ov 2=) (Bo) = 0 L (238)
oX ar EY

~Normalization. These equations are normalized using

the expressions:

s

]

| - N

} X = '}i ,- T = ?—E—- = p pw

; . > (24)
s -~ — —

: p= 5y () = B, (ov) = =B

5 ’ it . pmum ) apmum

KNote that these expressions are the same as equations (2)
with the exception that (pu) here is the same as the previous

p(1+62u).) The normalized forms of the equations (2?)'are

ﬁhen:

Continuity: ngu) g 2lov) o Lev) L | (25a)
( X ar r ;

| i
Longitudinal momentum: (pu)[? Bgzu) - (pu) %%]

;

; | | | (250)
f‘* (pv) [p _a__%%g_l - (pu) %%]4* 5202 !



)
N

P §_[~_.Q_Y.l - gpv) %% (25¢)

Lateral momentum: {pu) Ny

: ar ar

+ (owlp 2oV) (o) g-;z-]+ 02 28 = o

|

’iEner’gz: [(pu) %f + (pv) g_r'_](g\?) = 0 (25d)
: p

Similarity varigbles. Just as in the first section of

this chapter, the similarity forms of the momentum variables

are chosen using the relatlons for flow through an obllque

gy e e e

ghocg wave as guldes. Comblnlng the den;ity and velocity
}elations used previously (equations (4)) gives the follow-
?ng relatiqnsffqr the normalized variables just behind an
Ebiique:shOCki‘ L _

% . i

! (pu),  (y+1) Mi n? 8 2(M° sin® o -
(ou)g 2 —= = 2 .2 1-
; Pl (y-1) M_ sin B, - 2 (y+1) M
yl 1 2,2 ,ytl . 1 .
Gt gt (260)
- -1 1 1 2,2 L
(L= - 25 - —5—5)(1 + 6°R'") |
2 M2 wm2s%pr? 5

- X L2 2o Re? 4 g 200H) (ry7? 4 oY)
-l (y-1)° | |

3
t_l



ey - (pu) 20v+1) M2 sin® 0_(M 7 sin® o - 1)
pV I e———— = - ]
5 §hu 5 [(y—l)M 2 sin 8+ 2}(y+1)M 2 tan 6
o oo s o S
2 1 2.2
R'C - % (1 + s°R'D)| R .
[ M_2s } (260)

oo

—, (1 + 52312)]_(1 + §°R'2)
§%M

-
tino
—

Rt - 62 23 oo 20 royml oy ogst)
Y (y-1)

The similarity forms of the momentum variables are taken to
be:

D h
pu ='50;(r)'+ 52 Gé(r)ﬂ‘e + € Gl(r)(ﬂ')_2
and - '

pv = ﬁo(r) R' + 62

- > (D)
o (r)R'D + e fiy (r) (RO

’ -
Using the same perturbed, power—law shock wave shape as

before (equation (7)), these become (for e<6°)

pu = u_(n) + 52u2(n) m2E-2§1~m)+ e v,(n) 3’{1—2- 52(1'”‘) + ocau;

and |

ov = n_(n) mg—(lﬂm) + 82 by (n) m3é—3(1—m) + e uy(n) %:E(l"m)>(28)
osy '

Pl
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The similarity forms of p and p are unchanged from the
previous formulation (equations (8}). Putting the similarity
forms of these varilables into the flow equations (25),and

‘using the chain rule for partial derivatives (equations (9))

!
l

as before, produces:
{

[ X . l [ 2 -1
5Contlnuity. -(ué - nué + - uo) mg
3 ‘ ' ' - {29a)
‘ 2 l-m g 3, 2m-3 e
| 8Ty - v - 2(F ) v, 4 = Myl m7g
} | ( ) | by o
; l-m o 1 1-2m})’ _
f +~€[”i - nui + 2(—5—) vy + n ull = £ + OQG ) =0
i .
i . ! . . !
: . . ) B _ , -1
?ongltudlnal momentum: (nuo uo}(uowé wouo) mg
E 2
H _ " _
P8 {(npo uo)(uowg‘ erUé) +
; e e . ) R
i 1"'m 2 _ — ) PR t .
[2(=7) v, - (ny, uo)uo] Uy + (vl = v vy,
- [Cno, = w )y + n(u g! - ¢ ut) = 2(XMyy y Ju
: o oo 0’0 00 m oo 2
' 2m-3 (29p)

-2 tary ¢+ 2(5m) BT 0l

2
o}

-+

el(nuy - udu g - b oup) - [2(28) v
+(nug = H VST Wy + (Y vl = v by

R SR VS L 3SR SR IR ZEE IRV

-+

222 youl uyd & e (et = 0.

1
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Lateral momentum:

[(roy ~ u)(ugl = woul) + 92ry = (B22) y v ) mfg™?

+ 820wy ~ u ) (Hodh = Y ub) + YOFS
+ L2p Pl = (o = udud + (BB v Ty,

+ Loy = udvg + oy - ughy) - 3CED v v Tu,

S | o (29¢)
f [n(uowé ~ woué) - (;ﬁm) wouolu2}mu £3m 4 . :

1
t
t
}

bt
'

{[2¢0Fg - (o - wdu = 32 v Tw,
. ' ' 1 1-m
* Loy = w ) vl + (oul - u vl + (57 vov Ty

#Inlugwy = voud) = (2B you luy) €7 + 0(8") = 0
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Energy: [(nv - uo)(yFowé - ngé) - E(lﬁm)Fowouo] mngm"3

+ 8% 0(nug = u ) (YE UL - wF3) + [y(nu, - w,)o!

% l-m .

( e Yovol Fp - WF U - ¥ FE) 1

= vy = uy) B - 2™ (y-1)F v T v,

| |

+ (YUl = WP = 2(10) By T vy} mOg M5 |
(29a)

+ e{(nuo - uo)(YFo¢i -y F) ot Y(ﬁuo - uo)wéFl

!

(g w RS 2R (y+1IF v 1Y)

}4{n(YFo¢é B woFé) - z(iﬁﬁ) Fowo]ul

i

- (YPus = W FL) wpd meT + 0(st) = o

Zeroth-order equations. Using the same reasoning as was

employed 1n Section II-B, the coefficients of the zeroth-
order term, the order—62 term, and the order-e term of each
of these four equations must Se equal to zero. The
gzercth-order system of equations which results from

recognilizing this fact is:
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Continuity: 1 ' g
et Sttt Y ]O nUO +

n He T ¢ h

Longitudinal momentum: | - v 1y =
ngitudin momentum (nuo uo)(uowo wouo) 0

Lateral momentum: ' : > (30)

' 1 2 1-m -
o = uo)(l‘towo B lpouo) b, Foo- (_ETJ Vool = O

i
I3
]
i
i

(nu

|

Energy: .(nuo‘_ uo)(YFowé B ¢0Fé) - 2(lﬁm)FoonO -0 J

The 1ongitﬁdinal momentum equation can bé_intcgrated
immediately. For (nuo - uo) # 0 (i.e. away from the body
. . : . v I

surface, see next section), it becomes Uowo wouo 0,
"which has the SOlution,'uo = cy,. Comparing equations (26)
and (28), the boundary condition on v, at the shock wave

- Yt o -
is Uo(ns) v Thus, ﬁith wo(ns) given by equation (16),
the constant ¢ 1is

_vgtng) D)
and R0y ah ”
. v =y Y (31)

kThis result cgaid have beeﬁ anticipated by making a
compariscn of the similarlty variables for the two
formulations.as given by'equations (8) anad (28).)

Using the results'just obtained, the three remaining

zeroth-order equations may be written:

i



|

Continuity: ro o 2 = h
, ULl LS nwo f n Mo 0
Lateral momenium:
(g = w )(u gt -y ut) + wg (Fr - (12 41 =0 g (32)
¥ 0 0’0 o' o o) o m o
|
| | 1 2
. _ ' vy 4= 0 =
Fnefgz- (nwo UO)(YFowo woFo) 2( - ) b F, 0
! J
Order-8° equations. Also using the result v, = ¥ ,
the order—62 system of equations may be written: Lm
| . 1-m g -  '(33a)E
| | S = il -
‘Contlnulty. i) nuj 2( - ) U, f n.ug 0 ; B
| u
‘Longitudinal momentum: | 5
(b = w w0l —un) + (222 - (v, - u Ul
'“wo T MoV Yo 2 . m 0 o] o’To T2
| . (33b)
. »1=m 2 2 ' ._,.__l_m ! =
LG, -~ udl - 2(EETv, - vilaFy + 2(ME ] = 0
f
! 2
. - t ot '
Pateral momentum: (nwo_ “o)(“owe,_ wo“2> + YIF}
|
| £ (v (2F! + (BB ) - (np = u w1y
i o) o] m o] o 0" "o" "2
5 ' : _ (33c)

L, = U+ Chgud = o) = 3CEENR TN,

LI ! l‘:‘_ﬂ_‘l =
+ [n(uowo wouo) - o ) wopoluz _o
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&

5
D
I3
i
e

(g = W IOYF WL = W FA) - (YF 4 = 6 P )ug
F vy = u vl - a(ED)lE,
- [y, = u) By - 2B (v-1)F_y_Tu,

O

+ INOYF 0L =y FD) - 2(3F g Ju, = 0 :

The order-ec equations governing the shoek wave strength
i

.berturbation are very similar and could be written in the
%ame manner, but since they are not needed here they will
! .

i
pot be derilved.

¢
Y emee

‘ 'Sihbé‘thé'phySical homéntum domponent'variables are

?imply the products of the density with the velocity com-

bonents in the usual formulation, the similarity functions

;f the two formulations are simply related. Noting tﬁat

fhe normalized momentum variable {pu) is equilvalent to

p(1 + 62u) in the previous formulatidn, the relations between

fthe similarity functions are:

Vo T o - ¥ v,, and Hp = 0¥ + 9,9,
(34)

Boundary conditions. To determine the boundary condi-

i

ftions for the momentum variables, equations (28) must be
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|
1

compared to the expanded form.of equations (26). Putting
the shock wave shape (equation (7)) intoc eqﬁation (26) and
‘expanding gives

y¥l 2 2 2,.-2(-m) 2(I+1) 12 g2(l-m) 0(s™)

Z = £
Y-1 y-1 (y- 1)

? , , (35)

E(pu)s

(3m=2y - 1)p3g30m)

P
©
=
L
o
H
+
O'J

2 [a
Y—l Y-l 2

2 2-m y#1l: 1 {1-m) 4
+e =5 [(/F)a, + ] £ € + 0(67)
:The term~by-term comparison of these equations with equations

o
H(28) gives
_2_

: L2 N 2 3m-2
;uo(ns) T oy=1? U2(ns) T T y=-10 u2(lns) T oy-1 L= Ja, ~ 11
(36)

The boundary condifions at the shock on wo, wz, FO, and F2
fare the same as given by equation (15)., The boundary condi-
‘tions at the body are determined by the mass flow through
jthe surface, as in the previous formulation, Section II-C,
?In this case, when equation (16) is normalized in terms of
%the momentum variables it becomes:

i

(pV)b = (pv)w sec éb + % (pu)b tan 6, (37)



Putting in the similarity functions (eguations (28)), noting

v, T ¢O, and the relatlons f'or ftan Qb and soec Gb (egua-

tions (18)), the mass flow balance becomes:

! | o (1em) | g2 y1.3,=3(1-m)
LTug(ng) = ngw (ny ) Imé + 8%Tuy(ny) = nguy(ngdlm”g
f 1 (1-m) 21 22 -2(1l-m)
i+ eluy(ny) ~nvy(n )l = 8 - (pv) [L + 8" T ngm'E ]
:+ 0(5”) = 0,
If the mass flow through the surface has the form

- -(1-m) . ' _
(pv)w_ u m& , Where u, is a constant (uw = Q
for no flow), the zeroth-order and order—62 boundary
conditions are

Ho(ngd = nyvo(n ) = w,
(38)

_ 1 2
ug(nb) ~ nbug(nb) = 5 MMy,

fFor no mass flow through the body surface, which is the case

Tof present interest, these boundary conditions become
_uo(nb) - v ) = 0, us(ng) - mpus(ng) =0 (39)

The pboundary conditions can be used with the flow

:equations as in the previous formulaticn to provide some

-
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initial checks of thne order of magnitude of the similarity
variables. At the shock wave, the boundary conditions
(equations (35)) indicate the variables are of order unity
there., At the body, the zero—order boundary conditich
:(equation (39)) produces the same results from the zerc-
gorder energy equation (32) as.before; i.e. wo(nb) = (,
fThus the boundar& coﬁdition at the body (equation (39))
‘jbecomes Ho{ng ) = o (n.) = 0; but u0<nb)/wo<nb) =n, in
fagreement with equations (34) and (21).

| The development above shows that it should be possible
;to get order-62 similarity solutions using the-momentﬁm
variable f_ormulation, and that this formulation avoids the
isingulérit& in-the.zeroth-drder'longitudinal velocity at the
Abody surface. Whether the formulation is successful in

‘avoiding singularities in the order-6° variables must be

‘determined from the numerical solutions to be obtained.

E. Correlation of Scolutions

Hornung (26) suggested a method to nondimensionalize

‘experimental data so that shock wave shapes and pressure

idistributions for a given body power-law exponent would each

form a single correlation curve. The basis of his correla-

tion is to nondimensionalize the shock coordinates‘by'a

jlength scale D defined such that the body shape 1s given



by

l"b Em
By

1
1 —mli'

— m

Por = ngX oy D = (an)

4 ‘b
When this correlation is applied to the order~62 similarity

Esdlution shockuwavé shape, given by

L = =\m ' -\-2(1 ~ m)

: Eo= (B) |1+ 6% m®(2 ,
| st 3 27 \Z .

| 2 /=\=2(1 - m)
X
a6 T

:§;nq§'§hislequation does not contain-the slenderness parameter

S6, it gives a single curve for any given value of the body
4power~1aw exponenﬁ m; i.e., the order-6° similarity -
;solution produces a single correlation curve independent

.of the value of the slenderness parameter 3.

: Hornung suggested that pressure data would correlate in
much the same way if it were plotted as 5/5mﬁ§ vs x/D,
?where ‘ﬁ is the same non-dimensionalizing scale length

:as used for the shocks. In fact, the order—62 solutions
;show that not only the pressure, but alsc the other flow
?yariables correlate when X/D 1s the longitudinal distance.

.The pressure, density ana velocity components from

59quations (8) can be written
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i

. e e

- 7 —2(Ll-m) £ ~4(1-m)
§~ = 252p = ng[F mz( ) + 6°F mu( ) }
— =2(1-m) = —4(1-m)}
= 2[Fom262(5ﬂb)_2(%) + Fzmaﬁu(énb) (ﬁ) J
2 = -2(l-m) n Ao -8 (em)
= 2Fo(ﬁ;) (5) + 2F (“—) (5 ) s
- , = ~2(1-m)
&= p =y + 8%y,m*(%)
. -2 = -2(1-m)
_ n X
= Y, + wE(ﬁ;) (ﬁ) s
= - -2(1-m) = ~H(l-m)
%; = 1 + 629 =1 4+ éz{v mz(f) + szgm (g ]
' "(‘ )2(— ~2(1-m) "I(ni H(—)—u(l—m)
=14+ v (— ) + v s
‘ C TNy, o b
'and
= = ~(1-m) = ~3(1-m)
‘%;.z §|¢, m( ) + 6 ¢2m3( F) ]
-(1—m) om 3% —3(1-m)

Since none of these contains ¢ explicitly, each one forms
La single curve for a given value of the body power-law
iexponent m, independent of the body slenderness. Thus it
TShould be possible to correlate experimental velocity
?component and density distributions, as well as the pressure

‘distributions, by plotting them against the normalized

coordinate x/D.
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The regularity of the correlation form for expressing
the physical variables in terms of the similarity functions

suggests a possible refinement of the similarity formulation.

i

ﬁy using the local zeroth-order shock wave slope, expressed

as
| o

fi ‘ = " ~(1-m)

| T= (B =B (P ,

o U3

:5'{ =

: b
!

| A
éas the small parameter instead of the average shock wave

t . - :

- ‘slope & = R (2)/% (Figure 1, p. 13), 1t should be possible

;to improve the formulation. In particular, thils change
fwould facilitate the gstimation df-error in the nose region,
;where the local shdbk slope increases rapidly. While it has
%not been possible ;o include 1t in the present sﬁudy, such

'a reformulation would previde a goed starting point for

further work on similarity solutions in hypersonic flow.



CEAPTER TII SOLUTION OF EQUATIONS

A. General Scheme of Sclution

Either the velocity-variable or the momentum-variable
similarity form of the flow equation ((11) and (13) or (32) |
and (33)) with the boundary conditions at fhe shock wave
(equations (15) or (35)) and at the body surface (equations
(21) or (39)) is sufficient to‘completely determine a
solutlon for the flow field. However; since there is no
general analytic form for the solution in elther formUlation,
it must be found numerically for each case (i.e. for éach
value of the powermlaw exponent m with o .set equal to
either zerc or one). .The génera; scheme for obtaining the
numerical solution 1s to begin at the-shock n = g where the
boundary conditions are known, and to integrate the similarity

functions numerically toward the body, which is known toc be

reached when the zeroth-order boundary condition is

satisfied; 1i.e., n = hb when
ug(n)
¢0(n) =1n or a;rﬁj =1

The derivatives of the similarity functlons, used for this
integration,*are found by solving the flow equations for
them algebraically. Thus, from the zeroth-order equations

(11), the derivatives are

50



v - | - ™
Eé(n) = o é ljJO%‘Y(lmm)q,O - (n-¢0}[y % ¢O - g(lﬁﬁ:”
Y"(ﬂ*d)o) a .
' qJO FC‘) 1-m
‘Po(ﬂ) = T%ﬁ; + Q(T)/(ﬂ - d)o);
o >(40)
) = i Te ok 4 22
Vot = wme 1 Y, R o g
Fl
1 (n) = —= {0 _ (im
pe(n) TRrye I (=) ¢O£ J

The derivatives of the order-62 functions, from eguations

- (13), are

g _ ' F!
L 05(n) = “_(”.““’o) P 3 %’1- 03) = v 2 - ﬁi]

: o

; w2 FE Fé 1-m F2 ‘
¢ )= -5 5ot 2(5) o '
(-4, (lpo FO) F, m) F ynv! (i1a)
Y _ B N
e B2 oy + BB 0y 4 g2 v 2t zm)]

o o
i

|

: v
/qv - (n~¢0)2_§9£
. o

Fy = ¥, i(n—¢0)¢é ¥ [3;lgﬁ> - ¢5]¢2
(41b)
F \ \

1 1-m "o .
+[T¢O + (—5*)¢0]v0£ + ¢O ¥,



: TR 2 LY I %
SCAR R §[¢ b 2y ﬂ Vo T U9 |
' (4lc
+ (w' + = w o0 - 2( =Byy oo — Ny wl + wové)f

= 1 ' n_opr i-m é:
V2 " n_¢ogvo¢2 ) Yo 2 MY, Q“ld)

F P J;

o l-m _o 2 l-m\, ~2 ;

+ 0. BB — + FO) 0, (=) O]} ]

Similarly, the derivatives of the similarity functions for

" the momentum variable. formulation are, from equations (32)

and (33):
u - :
YD, + (- EQ—)[z(l—};‘l—Tﬂ)wo e uo]
' . Q _— .
Fo = 2y
Y - (n - -) 5
Q.
y (42)
9! =}-[Ip—°F' + p(Am w/(n—u—"ﬂ
Y FO © qJO
H _ p
ul = $§ pl + [F] - (lﬁm) M, 17/(n - $§
o

and



T Po. 1-m - My ' F2
F) -im - g2 [ - vt - 2] F
1- H 1= g H
+ 20 - g2y + vy) + v 34D - &n - @Z—)] b,
+ (n - Eg) gél}n - Eg)wg + (nu, + “2{] (433)
lpo FO lpc:‘ .

+

u : p :
' S g i-my "o -
%-g[(uo - 52 )y = 9+ YD) 2 G, - vy

o}

u ' |
- (2P, + (n - aﬁ)(nwé - ué)) wé]~ Yﬂ[}Fé - 2(lﬁ@)Fo]£
.' - |
[ - _1_ P! 4+ P! r ' u(l—m) | lbo F
V2 = 3F_ o o¥o = | YV - T |2
P (n - UJ—)

0 ?(&3bj

. 0o v 1 )
+[(F' - ¥F 22 (nu, - wy) o+ 2(ER) Yo 2 E }

o ° v, L
: {(n - —)
Vg &
1-m 1-m i: :
P! 2(=—) nF' + 2(——)F .
oy = vy 32 - oy v - Tem B e
o] (o] ; Q
(n - —) o {n = =)
wO wO
uh o= vy - Sy 4 23 v, | - (43d)
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Two major difficulties must be‘overcome in order tc
apply the scheme of infegrating either eguations (40) and
(41) or equations (425 and (43) from the shock to the body.
One difficulty 1s the singularity at the body surface {
apparent from the fact that thé denominators of some of the
terms of these equations appfoach'zero'aé the independent

n;ﬂ It was over-

vafiable n appfoacheé the su}face vaiue
éome by using:an approximate ahaiytic solution, developeq by
a'Mirels (10) and described in Section B of the Appendix to
calculate the valuédof nb anﬁ thé zerbth—order similarity
funcﬁiohs in thé region very near the body_surface. Fo}
reasons explained in'Appendix'Section ¢, the second-order
'variablés.éfe_calculatedat.tge bodj by extrapolatioﬁ of

thé drder—ﬁz similarity functions. The e;?rapolation techni-
ques'used are described 1n the next'sectioh. The second of
the two major difficulties is associated with the fact that
the problem 1s a two-point boundary value problem. This
difficulty is manifest in the need to choose initially the
correct value of the éhock wave displacement parameter as
(equation (7)) in order to satlisfy the order-6§° boundary
.condition at the body surface when n = n, at the end of

the integration. The steps taken to deal with this diffi-
culty are deécribed in Seetion C below.

{
!

— b o _
9o - N >0 as n>ny from equation (21).
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B. Extrapolation of Order=6° Functions

Two simple extrapolation techniques were used to carry
the order—é2 simlilarity functione the short distance from
4the last computed point to the body surfacef For the
velocity—yariable formulation ehe extrapolation_nsed for
each of tne functions F,, W2"¢2’ end vV, was a cubic
function of n passing through three computed peints of the
function and having Zero curva;nre at the body surface. |
The points used to- define the curve were the last computed
point and two previously computed points The number of
steps between the points was the next Integer larger tnen
the distance between the last point and the body divided by
the last step size. . ',“hjwi';;; i e e e et e o e

For the momentum»variable formulation, the functions
F2 and v, were extrapolated linearly to the body surface
using the last computed point and slopes. The order-8°
stream function 6, and 1ts derivative were also caleulated
at the last point, using the momentum-varlable form of
equation (A9), and 62 was also extrapolated linearly. The
values obtained were then used in equations (34) and (A8)

to calculate wz(nb) and uz(nb);

C. Methods for Determining the Constant a,

Since the constant a, 1s initially undetermined, the
value of the order-62 shock wave . simllarity ordinate

*
‘The results are insensitive to the technique (Section IV-B).
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-2(1-m)

ng = 1+ 52a2m2 £ is unknown and cannct be used to

begin the integration toward the body surface. Also, this
shock ordinate varies with the longltudinal distance &, so0
that its use would require a separate solution for every § I

1

value. The use of the zeroth-order shock ordinate n
as the starting point for ﬁhe integration avoids these two
prbblems in detefmining the initial value of ng but requires
that fhe boundary conditions be transferréd to n =1 from

n = Mg, the*order—ﬁzAshock position, where they are known.
This transfer is made by'using:the Taylor series expansions

of the similarity forms of the flow variables about the

point n=n in the same way as Kubota (9) and Mirels (10)

5 .
did for the order - perturbation. The Taylor series expan-

sion of.a general function g(n) about 1 is

_ | - 2 (n ~n )2 .
g(n) = g(ns) + [g—%]ns(n - T'Is) + [g"‘%]n *———ﬁ"l—'ﬁ—-‘ +...

Applying this expansion to equations (8)(with terms of order

¢ neglected) and evaluating at n = 1 give

(1 m)
g(ﬂﬁa)

p(£,1) = F,(n )mPg~2 (M)

+ 6%(Fy(ny) = a,Fl(n )im'E
+'0(6u)

. i
: \

f ) | f
1

p(g,1) = yp (n, ) + 52 (b,(n ) - a2w (ng )Im2gm2(2m) 0(5¥) (440)



2.-2(1-m) H(l m )

u(g,1l) = vo(ns)m £ + 62[\)2(%) - (n )1m

+ 0(6“)

v(£,1) = #O(ns>m5“‘1“m’ + 6204,(n ) = 2,8} (ng)ImE”

i ‘ A o f

£ o(s™) . | !
.{ ‘ . J

Similarly applying the Taylor series expan51on to equations

(44c)

3(1-m)  (44d)

(28) gives ;

(pu)(£,1) = v_(n) + 62[uy(n) - ayvl(n ) img 2 4 “ocsty

— . ’ (u5)

(pv)(E,1) = g (ng )ma Am) g [ug(n ) < aguy(ng)Imdgm3m)
+ o(s™h |

Evaluating equations (8) at n = 1 directly and comparing
the results to equations (44) and (45) yields boundary

condition transfer relations of the form:

F (1) = F (ng),  Fy(1)

F2(ns) - a2Fé(ns)J

¢o(l) Wo(ns), ¢2(1) wz(ﬂs) - a2¢é(ns):

ete.
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Putting equations (40) in for the derivatives and applying
the boundary conditions at ng (equations (16)) gives the

transferred boundary conditions at n = 1:

PL(1) = ¢, (1) = -31 Vo (i) %i%, vo(1) = 35 I
Py(1) = ST i [g3m' - 'm)<%$§%>.¥ s, - 1}
1¢2(1) - - Yfl [3( ;m)(7+1> i o&a | | }(ue)
v,(1) = - 255 {z[(igzﬁ) _‘}1;m3 i Yi}]ag.—:i}.

0,(1) = 51 z[(iﬁ_:%) _;'3(%) + 2 Ma, - 1‘ )

Similarly for the momentum variables (equations (42) and(36):

fl

v, (1) Y+l b (1) = 2o

|
y-1"~7 o y-~1 { -
| |
v,y(1) = - B¢ {ts( I - olay + 1}- Loan
-
|
(1) = 53 {t(igzg) - 3D D) + 201, -_1}
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Iteration method. These transferred boundary conditions

provide a definite starting position for the integration

| toward the body, but the_constaﬁt as must still be deter-—
mined. There are two methods for determining P The more
obvious gne is to guess the ?alue of CPY integrate toward
the body (using the method gilven in the previous section to
reach the surface), test the o;dér—ﬁz boundary condition

at the surface, and repeat using lmproved guesses untll the
surface boundary conditiﬁn ié satisfied closely enough.

The improved gussés for this ikeration method were made

using the method of chords, a finite difference approximation
£o the well known Newton-Raphson method. (Note that the amount
by'whiéﬁ“the boundary cdhdition is-not satisfied correéponds
to the méss flow through the sﬁrface according to equations

(20) or (38).)

Decomposition method. The other method for determining

takes advantage of the linearity of the equations'in
2

a2
the order-8© functions, which allows supefposition of
solutions. It was used by Sakurai (4), kuﬁota-(S),-and
Mirels (10) in obtaining their results and is applied in a
similar manner here. Each of the order—62 similarity
functions 1is decomposed into a iinear combinatibn in the

parameter 853 e.g.
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Fg(n) = an(n)a2 + Fyl(n),
(48)

wa(n) wga(n)a2 + Y, (n), ete.
Splittingfeach of the equatlions obtalined in this way into

- two separate equations, by settihg the term containing 2,
and the other term eech equal to zero, produces a system of
equations in the subscript-a fuhctions and a system in the
subscript-¢ functions. The system in the subscript-c
functions is identlcal to the original system of equations
(13) or (33). The system in the subscript—a functions is
the same except that the inhomogeneous terms (i.e. the terms
that do not contain an order §° funotion or its derivative)
do not appear. These two systems of equations have two
different sets of boundary conditions. In order to obtain
them,.the boundary conditions at n = 1 (equations (46) or

(47)) are decomposed by comparisons with equation (48),

gliving

Foo(1) = iy [(322) - (&A= + N, 7, (1) = - By (49a)

Vpp (1) = - 25 1 [3( 2y ( “1) - c], Voo (1) = 0 (49p)
_ 4 3m-2 1- 1 >

Vaa(l) = - [ a0 - CEMED + gl Ve = gp (99
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b0 (1) = 727 ((E0) - 32ty + 2 (9, 0 (1) = - (4sa)
or,
_ /
0,a(1) = = 2o 13D A - o1, v ) = - B
| ‘ (50)
Hoa (1) = 727 1By - 3 M) + 20, wy (1) = - 5

These decomposed variables are then substltuted into the

orderf-G2 flow equations,.so that the continuity equation (13),

- for example, becomes:

c

+ Loy + 2o+ 2Ny, e,

O
' t g - - !
+ §w0¢2c g Ve - (- 450V

+ o)+ o, + 20310, - v b

~ (v} + 2( )v 1y }

Beginning at n = 1 with these boundary conditions, the
decomposed system of equations (in elther the velocity

variables or the momentum variables) 1is integrated toward



the body. Near the surface the method given in Section III-B
is used to obtain-values for therdecémposed functions at the
surface. The boundary condition at the surface, expressed

in terms bf these surface values of the decomposed functions,
is (from %quation (21)})

¢2a(ﬂb)a2 + ¢2c(fl'b) - nb\)o(ﬂb) = D

or {from equation (39))
[“2a(”b) - nbuza(nb)]a2 + [ﬁ2é(nb) - nbuzc(nb)] = 0

Thué, in the velocity-variable formulation, the value of a,
is found from the relation

nbvo(nb) - ¢2c(nb)
¢2a(nb)

a, = (51)

In the momentum formulation, a, is

_ NV, (N ) = iy, (ny)
3.2 - nbuza(nb).“‘ U2a(nb) ’ <52)

The value of 8, is now used to recombine the decomposed
similarity functions using relations such as equations (48).
Once these functions have been computed for any value

of the body power-law exponent m (with o = 0 or 1), they
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can be used to calculate the complete flow field about

any such body as long as it is slender enough that 6u << 1,
and the Mach number 1s large encugh that ¢ = % 5 << 1.
M6

D. Description of the Numerical Method

The equations derived in the previous sections of this
' diésertation have been programmed for numerical solution on
the CDC 6600 digital computer at the NASA Langley Research

;Center. Three separate programs were written, éorrespond—
ing to three of the different methods of obtaining:séiutiohs
whichlhave been discussed. Two of these progréms integrate
the velocity-function equations (40) and (41); one uses the
iterativgféndlthekgthér theﬁdeébmpbéitioﬁ,method for.obtain—
ing the.value of 52. The third program integrates the
momentum function equations (42) and (43) and determines a,
by the iterative method. All three of these computeribro-
grams use a standard integration subroutine employing the
fourth-order Runga—Kutfa formula supplemeﬂted by a Richard-
son's extrapolation. This subroutine halves or doubles the
integration step size automatically in order to meet a
specified local truncatlon error.

For the present computations the initial step size (in

8

n) was 2 ° (.00390625), and the maximum allowable step size

Was 2_7 (.0078125). Generally the step size decreased to

15

less than 27~ near the body. At each step estimates of
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Ny, and FO (nb) were computedlby theAmethod given in
Appendix Section B (equations (AlB)); When both estimates
agreed to within 1.0x107° on successive steps, the estimates
were acceFted as the actual values of n, and F (n,) and
the values of the other functions at the body were computed
from the approximate analytic sdlution given in Appendix
Section B or the extrapolations glven in Section III-B. The
iterative programs used a “metﬁod of chords® algorithm to
compute impfoved estimates of the values of &g (This 1is
a finite difference approximstion to.the well—known-Newﬁon—
Raphson method ). The iteratioﬁ was cbnsidered to have con-
verged when the order- 6 boundary conditlon at the surface

(equation (21) or (39)) was satisfied to w1th1n 0.5 x 10 10.



CHAPTER IV. DISCUSSION OF RESULTS

A, Zero - QOrder Functions

The methqu given in the 1ast.?hapter have Eeen used to{
compute the zeroth—ordef and érder—ﬁz similarity functions
for a number of cases, which will be presented and discussed
in this chapter. Unless otherwise noted, these cases are all
for vy = 1.#,\representing alr as an ideal gas.. The Figureé
' presenting the functions were plotted by Calcomp plottiné
machines directly from the combdted resuits. The slight
waviness which may be noticeable at some points in the )
Figures is a ;esult of this comﬁuter-aided plotting‘process;
' hpwsver; thei§urVes“atUall poihts on the plots are -accurate
to within 0.1 percent of the full scale values.

The zeroth-order similariﬁy functions Fo’ wo’ ¢O and
v, are shown for several values of the power-law exponent
m in Figure 4 for two-dimensional flow (o = 0) and Figure §
for axially symmetric flow (o = 1). These fﬁnctions agree
with the same functions calculated by Kubota (9), Mlrels
(10,16), and Townsend (23).

The pressure function Fﬁ and the lateral-velocity
function '¢O are seen to be smooth and well-behaved from -
the zero-order shock location (n = 1) to the body surface.

Note that the body surface values of ¢  lie on the line

¢0 = n in accordance with the zeroth-order boundary condition

65
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Figure 4. Zeroth-order Similarity Functions for Two-

Dimensional Flow (g = 0).
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(b) Pensity function, Poln).

Figure 4, - Continued.
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~ (¢) Longitudinal velocity function, v_(n).

Figure 4, Continued.
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(d) Lateral velocity function, ¢5(n).

\Figure 4.  Concluded.
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Figure 5. Zeroth-order Similarity Functions for Axisym-
metric Flow (o = 1).
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(b} Density function, wo(n)‘
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(c) Longitudinal velocity function, vy(n).

Figure 5. Continued.
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(equation (21)). As expécted from the discussion in Sectlon
II-C, the density function b, and the longitudinal velocity
function Vo exhibit different types of singular behavior at
the body surface for m # 1: ¢§ goes to zero, and v, goes |
toward minus infinity. From the Figure it appears that the
effects of these singularities are confined to a thin layer
neér the body sufface, at.least for values of . m neaf 1.
The zerofh—order lateral momentum functibn Mo 1s
;‘shown in.Figure 6 for both the planar and axisymmetricdcases.
As indicated in Section II-D, the longitudinal momentum.func-
tion | v, is the same as the density function ﬁpo, and the
pressure and densityrfunctions, FO and .¢0 are the same as
in the ﬁéiocify—vériéblé;fofmuiétion. In thé‘separate‘cal-
culations made for the @omentum-variable formulations, these
funetions came out esséntially identical to.the previous
calculations, Figures 4 and 5. The function Uy is'seén
in Figure 6 to behave like wo, in agreement with the com-
parison of methods in équations (34). Thus the reformulation
in terms of momentum Qariables was successful in avoiding

the unlimited growth of v, near the body surface.

B. Shock Dilisplacement Constant

The variation of the calculated order—62 shock_wéve
displacement censtant a, with the power-law exponent m

is shown in Figure 7{(a) for both two—dimensional and
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(a) Two-dimensional flow (o %‘O).

Figure 6. Zeroth-Order Lateral Momentum Function, uo(n).
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(b) Axisymmetric flow (¢ =

Figure 6.

).

Concluded. -

.00



77

axisymmetric bodies. The calculations made using the itera-
tive method for obtaining a.2 gave essénfially the same
values as were obtained by the decbmposition method (equaticns
(48) - (52)). As can be seen in the Figure, the momentum- /
variable formulation resglts for a2 differ only slightly
from the results of the veloclty-variable formulation.
However, all of the results aré characterized'by a singular

. discontinuity in an which has no physical counterpart in
the actual'flow about power-law bodies. This singularity,
which occurs near ﬁ = .317 for o =0 and néar‘ m = .653
for o = 1, represents a rapld decrease in the distance

from the shock to thé body as the power~laﬁ decrease,
followed-by a jump to a 1arge'distance at the discontinuity.
Since this behavior is physicélly unrealistic, it must be an
artifact of the mathematical processes (analytical and
numerical) used to obtain the solutions.

Figufe 7{b) shows. that the singularity is associated
with a zero in the denominator of equation (51). (This is
the equation used in the decomposition method.to determine
the value of ay satisfying the order—62 boundary condition
at the surface.) Since there is a nearby zero'in the
numerators of this equation, it is probable that the
singularity in the quotient a, occurs because the zeros
in the numerator and denominator, which should coincide, are

displaced relative to one another. (Coincldence of the
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zeros would make ans mathemétically indeterminate at that
point but would allow a continuous variation of 32 with m,
from which the value at the indeterminate point could be
Einferred;) The most likely causes of such a zero displace-

;

ﬁent are accumulated truncation errors from the numerical
integration and errors in the extrépolation from the last

Il
i
’
1
b
i

integration point to the body surface. Any error occurring

lin these processes is aggravated by the fact that the

'numerator of equation (51) is the small difference of two
nearly equal extrapolated numbers. For example, with o = 0

;and m = .83, n, = .73327 and the extrapolated values

]

vo(nb) ‘
i=.0108 with-a relative error about 1000 times that of the

-9.9910 and ¢2c(nb) = -7.3153 give the numerator

1 ‘
individual functions; that is, an 0.1% error in vo(nb)

b

fand ¢2c(nb) would become a 100% error in the numerator of

fequation (51).

To test this line of reasoning, additional calculations

fwere made reducing the step size, reducing the range of the

éextrapolation, and finally, extrapolating the whole numerator

1

iof equations (51) rather than just the separate parts. The

| .
fresults of these calculations jindicate that the wvalue of a2'

| :
zis gsensitive to these changes for power-law exponents less

ithan that at the singularity; but, the position of the
{
ésingularity and the values of 8y . for m greater than that

¢
jat the singularity were virtually unaffected. Thus, removing



31

the singularity would requireia more radical change in the
mathematical precess than simply. changing parameters in the
numerical integration and extrépolation schemes. This con-
Vgclusion is supported by the results shown in Figure 7(a)
fwhere the singulafity 1tself appears to be unaffected by
;the change to the momentum variable formulation and change
gin extrapolation mode, althouéh there are large changes 1n
the computed value of a, for m less than that at the
ésingu%grity& Ngte that, while it 1s associated with the
jzero in the denominator of equation (51) from the decom-
Eposition methbd for determining as, the singularity in
‘ag occurs at exactly the same place when fhe iteration
method is used. | |

i

% The results of the present calculations should be good

for body power—law éxponents above those for whiCh there is

ja significant influence from the singularity. Based on

Figure 7, the range for good results is about .85 <m < 1.0

fl

for the two-dimensional flow (o 0) and .75 <m < 1,0 for

;the axisymmetric flow (o =.1); Note that this is a more

;restricted range than that for similarity solutiéns

;( 20 <m < 1, Lees and Kubota (8)) or to avoid first-order
| 2(y+1) '
Eentropy—layer.effects ( 310 YD <m <1, Freeman (17)).

i



C. Order—62 Functlons

The order—62 similarity functions Fz, wz, Vg and Ko
from the momentum-variable formulation, computed for axisym-
%etric flow (¢ = 1) using iteration, are shown in Figure 8. |
&hese funbtions are seen to have some differences in behavior
from the zeroth-order functions-detcribed in Section IV-A.

The most obvious difference is that the curves describing

these functions do not all emanate from a 31ngle point at
‘n = 1. The variation at n =1 is.due to the variation of
the boundary conditions at the shock with the body power- -law

m and to the transfer of the boundary conditions from the

shoek to iﬁ =.l. As was noted Sectlon B of Chapter I1I, the
cvalues of these order 6 functions at the body surface were
rfound u51ng a linear extrapolation from the last computed
:point of the numerical integration. The range of the
?extrapolation was less than .00002 in n for all the cases
;shown except for m = 1.0, for which the extrapolation was
imade over an n distance of less than .001.

The order—62

‘ similarity functions_ F2, wz, Vs and ¢2
from the velocity variable formulation and using the cubic:
Fextrapolation to obtain the surféoe values are shown in

'Pigure 9 for axisymmetric flow (o = 1). The results shown

i
{were obtained using the decomp051tion technique for calculat-
:ing the shock displacement constant a, {(equations (48) -

L(i%)), but essentially identical results were also obtained
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(a) Pressure function,-Fg(n).

Figure 8. Order—62 Similarity Functlons from the Momentum-

Variable Formulation for Axisymmetric Flow (o = 1).
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Figure 9. Order-8° Similarity Functions from the Velocity-
' ' Variable Formulation for Axisymmetric Flow (o = 1).

(a) Pressure function, Fo(n).
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using iteration. The two functions F2 and w2, which are

the same in both the velocity-variable and momentum-variably

formulations, are practically the same in Figure 9 as in

-

Figure 8. However, for power-law exponents less than thoseJ

shown there are differences which become large as m de-
preases, corresponding to the behavior of the constant ay

kFigure 7).

i The_same_comparison between methods of computing the body
| %urface values of the order--d2 similarity funections that was

{
made above for the axisymmetric bodies can be made for the

?wo—dimensional bodies (o = 0); The momentum-variable
;similarity functions for these bodies computed using the
flinear eitrapolation teéhnidue ére‘shown in ‘Figure 10. The
3

wveloceity-~variable similarity functions computed using the

fcubic extrapolation technique are shown in Figure 1l1. These
s ‘ .
two sets of functions exhibit the same type of agreement as

the functions for axisymmetric bodies (Figures 8 and 9).
All of the order—62 velocity and momentum functions

fshow singular behavior at the body surface for m < 1. It

+

was 1n anticipation of such behavior for Vg that the

homentum—variable formulation was undertaken (Section II-D).
| |
limited growth of v_ at the body, it did not avoid the same

While the reformulation was successful in avoiding the un-

;type of behavior by the order—62 functions, Because of this

ffa;lure to eliminate the singularities and because 1t does
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(b) Density function, ¥,(n).
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not improve-on the results of the ordernﬁg velocity—variable
formulation in either quality or range of application, the
momenftum=~varlable formulation of the flow equations has Very\
little advantage over the more conventional velocity-variable
formulation. It has, however, provided a useful check of {
the numerical results. |
The singularity at the body surface is thought to be an
entropy layer effect caused by the blunt nose of the body
‘for m < 1. The effect is confined £o a very narrow reglon

~ since the very high curvature in the nose area (lnfinite at

0) reduces the body slope rapidly. For example, when

X

m .80 and & = .5, the slope decreases from infinite té
less than 1.0 before . X/% = . 006,

As nofed previously, Mireis (10, 16) recognized the
singulafity at the body surface and avolded calculating the
longitudinal velocity function, which exhibits the singuiar
behavior. 1In addition, Mirels (10) developed an approximate‘
analytic solution which is valid at the surface and used it
to obtain surface values of the zeroth-order ﬁunctions (see
Appendix, Secﬁion A). The attempt to extend the approximate
analytic solution to order 62 is also dlscussed in the
Appendix. 7

Van Dyke (29, p. 185) notes the same singulér hehévior

in a small disturbance solution at the surface for hypersonic

flow over a blunted wedge and observes that it occurs because
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the zero-order scluticn '"is not a valid first approximation
in the entropy layer." He uses the method of matched asymp-—
totic expansions to cobtain a uniformly valid analytic solu-
tion for the blunted wedge. Adaptation of that method to
the similarity solution problem for power-law bodies
probably would extend the solutions to the body surface; but,
the‘application is-not stralghtforward since the similar
solutions are not analytic and therefore do not give the
rorder of the singularities which occur.

The effect of the singularity at the body surface,
then, is to make the order-8° solution inapplicable at th:;s-
body surface except for the pqrtiéular cagse m = 1, for
which the-body does not have a blunt nose. But, the |
singularity should nbt affect the solution away from the
surface, where the'similarity_functions are bf prder unity,
lso long as the constant 8y 1s correctly determined.
Furthermore, the behavior of the order-§° similarity
function for the pressure (F2) is quite regular all the
way to the surface. Thus, the body 'surface pressure can
be calculated using this function; however, the fesults
must be suspect until checked against experiment or more

exact results.
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It is because of the singular behavior of the similarity
funcﬁions that the numerical integration cannot proceed all
the way to the body surface. Neither do the extrapolations
‘%ollow the singular functions in giving values at the sur-

face; so,; the calculated surface values of these functions
| .

do not rebresent the actual values of the singular functions,
which go to either plus or minus infinity at the surface.

To the extent that they are useful for determining the value
of a5 the extrapclations can be considered as providing

limiting process for this constant.

D. BRegion of Validity of the Sclutions

o e g

i Three basic assumptions were reguired in order to obtain

a._ [

the hypersonlc similarlty solutions for power law bodles

gl) the body i1s slender enough that terms of order 64 are
hegligible compared to unity; (2) the shock wave about the

: ?ody is strong enough that terms of order e = l/GEMi are
;negligiblé compared to unity; and (3) the Mach number is large
Eompared to unity. (The second of these can be relaxed to

%2 << 1 1if the first-order solution in € 1s applied.)
however,leven when these three assumptions are met overall

Fbr a particular peower-law body, they generally are not all
ﬁet in particular local regions.

§ The first assumption, Gu <{ i, is obviously violated
én the nose reglon of all blunt bodies, such~as the power-law
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bodies for m < 1. Thus, the'similarity solutions cannot be
éxpected to apply at the nose of these podles. But, the

order—ﬁ2 solutions should be particularly useful in provid-
| 1

an an improved solution a moderate distance behind the nose.

i
?s mentioned in the previous section, the violation of the

slender body assumption by the blunt nose is also the cause
of the singularities in the order=§> functions at the

body surface. Therefore, because the first assumption is

%iolated at the nose, the orde_r—é2 solution doeslnot apply
-bt the body surface.

% The strong shock assumption, e << 1, 1s violated whérever
Ehe shock wave angle approaches the Mach angle, sin"l(lme).
%nless the Mach number 1s eXtremel& large, the shock wave

i
will become weak far downstream from the nose of the body,

'and the similarity solutions will not apply in that region.

; The similarity solutions apply, then, in an intermediate

region from behind the nose to somewhere in the vicinity of

the base of the body, and, in the case of the order-§°
i .

:solution, only outside of the singularity at the body sur-

gface. The boundaries of this reglon depend on the Mach number
2’ .
'and on the power-law exponent and slenderness of the body.

t

Decreasing the Mach number or increasing the slenderness of

}

!

the body tends to weaken the shock; decreasing the power-law
'exponent increases the nose bluntness but weakens the shock

?at the rear of the body. In any case, the boundaries of the
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region in which the solutions apply are not sharply delined.
They depend on the accuracy required in the results of each
particular problem and must be ultimately determined by

" 'comparison with experimental results.

| E. Comparison With Other Soclutions

The only exact solutions availlable for comparlson with the

isimilarity solutlons are those for [low over cones and

wedges, corresponding to a power-law exponent of m = l.

Since the zeroth-order and order-§° similarity solutions do

i

{ ‘

znot contain any Mach number dependence, .the most appropriate
[ . ‘
gcomparison is at the hypersonic limit, M_ + <. {(To include
| _

Mach number effects the order-e solution would have to be

L

;usedmaiéb;s Rééﬁité frbm.fhé similarity'solutions, in terms

of the physical flow variables, are compared in Figure 12
fwith the exact solutions for flow over a range of wedé?
je‘angles at infinite Mach number. Thié flow, of course,‘is
iuniform behind the straight oblique shock wave, as indicated
:by the solutions for m = 1 in Figure 4, pages 66 - 69,
Eand Figures 10 and 11, pages 92 - 99. _Ih'Figu;e 13, results
‘from the similaritﬁ solutions are compared with the exact
Esolutions for flow over circular éoneéQ Parts (a) of

1

éFigures 12 and 13 show the variation of the shock wave angle

1

%with the body surface angle, and include exact results from

greferénces 24 and 25 for several Mach numbers in addition to
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M_ = «. The similarity results are found from
1 tan 6,

2?‘."“.. J = = o ! .S'
Lan GS R 8R*', where & Sar T ™ , and R i

found from equation (7) with m = 1. The other parts of

khe figures show the variations with the body surface angle

1

bf the pressure coefflcient p/q_, the velocity

;
Lo A~ z - - -
y/u =Va° + v2 /u, , and the velocity components u/u,

(<5

and F/ﬁm in the uniform flow behind the =shock Wave‘(Figure

j

12) and at the body surface (Figure 13). .These similarity ‘
results are found from equationé (8) with m = 1. The exact

.‘?esulfs are found from the obligue shock relations in the
! : .
two-dimensional case and from the charts of reference 24 in

]

the axisymmetric case.
1 .

|

+—- -~ These Figures show that for m = 1 ‘the zeroth-order

Fimilarity solution agrees well with the exact soclution for

pody éurface angles'up to about Bb = 120, while the order—62
{solution agrees well up to bedy angles of about Bb = 200.;
:As can be seen at the bbttom of the Figures, these cone or
jwedge angles éorrespond to slenderhess-parameter values of
%bout § ~ .2 and & = L4, The similarity results for the
fmagnitude of the velocity show good agreement for even
%larger body angles (Figures 12(c) and 13(c)). Since the
;error in the velocity components is larger (Figures lz(d)r

gand 13(d}), it must come largely from error in predicting

;the direction of the velocity vector. This error in

i
1
i
I

direction is shown in the upper part of Figures 12(ec) and

13(c), where it is compared to the curves 529b and -6”eb.



These curves represent the order of error expected from
neglecting terms of order 62 and of order 6“, respectively.
The error actually occurring is seen to be very c}ose to
ﬁhat which was expected. It should be noted that this error
?n the direction of the veloeclty vector corresponds to an
%rror.in satisfying the boundary condition that there should

| _
be no flow through the body surface. That is, the velocity
4

1
i

S ‘ S
component normal to the surface, 3 = ¥ sin[%an (_w) - eb],
W

ShOU1d be zero (Flgure 3, p- 30) Figures 12(c) and 13(c)
. ishow that this boundary conditlon is satisfied to order 62
by the order- 6 similarity solution for m = 1.

In Parts (b) of Figures 12 and 13, the pressure coeffi-

ﬁfents are compared also with the Newtonian prediction:

— 2
%p/qm = 2 sin eb.
laccurate for the conical flows (Figure 13(b)) than for the

iwedge‘flows (Figure 12(b)); however, even in the conical.

The Newtonian prediction is much more

1case the order—62 similarity solution is closer to the exact

Esolution for moderately small values of the simllarity

Eparameter, i.e. & < 0.5.
§ In Pigure 14, the varilation of the fleow variables from

:the shock to the body is shown for three values of the

power-law exponent, m = -5, :85 and 1.0. The pressure,
{ . .
gdensity and velocity components, calculated from the axisym-

Emetric zeroth-order and order—62 similarity soclutions, are

‘shown at %/% = .5 for a similarity parameter value of



§ = 0.4, The exact sclution for a cone at Mach 20 with

Bb = 20° {reference 25) is also shown in Figure 14{a) for

comperison with the case m

Il

1.0. Although the conical
bodies are not the same (6 = 20° corresponds to & = .3978),

2

the order{ﬁ similarity results agree well with the Mach 20

%olution shown for all the variables except the density. As
%an be seen by the symbois representing the exact solution
Eor M > at the shock wave, the density is the only one
gof the flow variables that is much affected by the difference
between M, =20 and M_ » =. The similarity solutions for
~the den51ty agree exactly with the. 1nf1n1te Mach number
ésolutien at the shock. The order-é2 solution for the other
ﬁvariables diffef from'éhe exacf“'infinite—Mach number solu-
tion at the shock by amounts which are of order. 6” as
expected from the approx1mat10n to the obligue shock relatlons
'used (equations (#)). On the other hand, the zeroth-order
;similarity sclution is not accurate for a cone of this thick-
jness; it is off by an amount of order 62, which i1s 16% for

;6 = .H. Note that the zeroth-order results stop at n = 1,
iwhich is the zeroth-order shock wave lecation. The ordef—a2
gresults at the shock are given by'equations (15); the
%integrated solution begins at n = 1, with the results in

; _

'the region 1 < n < ng &lven by the Taylor series expansion

:as discussed in Section TII-C.
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For body power-law expoﬁents othef than m = 1 there

is no exact solution available for comparison with the order-

2 solution. However, there are some simple empirical methods

8
?or estimating the pressure on general bodies. Two of these
%ethods will be-used for comparisons. One is the Newtonian
ﬁaw Cp = 2 sineeb. As discussed by Hayes and Probstein (1),
%t corresponds to the limits y » 1.0 and M + o3 but, it

ﬁs widely used for more generai hypersohic flows in this or
% .
modified form. The other empirical prediction is the

Jtangent—cone method, which takes as the pressure, at any point
|
;on a body the pressure on the cone having the same surface’
|
|
for M

angle as the body point. Thlis method also is most accurate

.~ ©, since then the shock layer is very thin with

ilittle pressure change across it. Hayes and Probstein (1)
fgive a thorough discussion of these two metﬁods and their
élimitations. Only one limitation will be mentioned here:
ithese methods give only the body surface pressure and are

not complete flow field solutions, as are the similarity

I

fsolutions.
: _
i

The calculated flow fields for bodies having m = .85
‘and m = .75 are shown in Figures 14(b) and {(c)}. In these

: ‘ 2 o 4 . . .
‘cases the order-§~ solufion is again a major correctlon to

H

‘the zeroth-order solution. However, the singularities
iin some of the order-§° similarity functions show up here

'at the body surface. Because of the singularities, the



order—62 values of the density and fhe veloclity components
are preobably unrealistic close to the surface. TFortunately,
the pressure is well behaved all the way bto the body surface,

50 that surface pressure coefficients can be calculated.
|

|

;solutions are seen in Figures 14(a}, (v) and (c¢c) to agree

The surface pressures calculated from the similar

Efairly well with the empirical predictions of the Newtonian
}

‘and tangent-cone methods. However, as m goes from 1.0 to
! .

0.85 to 0.75 the order-8° similarity solution pressure

1

{drops faster than the tangent-cone and Newtonian pressures,

;50 that the agreement becomés progressively worse. Whether

jthe similarity solution or the emplrical metheds give a

s

&

jbettqr representation of the actual preséure changes with'body

'power lawlmust be determined by comparison with experiment

as in the following section.

2
i

v
'

‘F. Comparigon with Experimental Results

There is only a limited amount of useful experimental
jdata on the hypersonic flow fields about power-law bodiles.
EThis data consists mainly of measured shock wave Shapes and
?surface pressure distributions for 3/4- and 2/3-power bodies
;df a few different fineness ratios. In this section the
;similarity solution predictions for shock wave shape and

‘surface pressure for axisymmetric~bodies with power-law

exponent of m = 0.75 will be compared with the experimental
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o
results of Kubota (9) and Peckham (19). No comparison is

made with results for smaller power-law exponents since
valid order-§° similarity sclutions were not obtained in
those cases. Also, no compariscns are made with experimen-

!

ﬁal total drag measurements (e.g. those of reference 22)

!

because of the uncertainty in calculating the skin friction
|
contribution.

i

i
,g Shock shape. Because the shock displacement constant
K ) | -
slightly different from the zeroth-order shape, an example

! _
of which 1s shown in Figure 1, page 13. For example,
i . .

§a2 = ,0582 when m = .75 in axisymmetric fiow (Pigure 7,
[ . RS .
oy 2

page 78, o = 1);h' thus, even for & = 0.4, the order-§

is so -small, the order—62 shock wave shape 1s only

Eerm in‘equation (7) for the shock shape R/Z amounts to

- only about .003 at the base of the body (x/% = 1.0). There-

fore the order—62 shock wave shape cannot be expected to be

much closer to the experimentally measured shock shape than
i
lis the zeroth-order shape.

The zeroth-order and order—62 shock wave shape predic-
:tions are compared to the shock shape data for m = .75
|
from references 9 and 19 in Figure 15. These data are pre-

isented in the correlation form used by Peckham (19) after a
| .
i

suggestion by Hornung (26).

]
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The experimental data for the ghock shapes are seen to
correlate well with cone ancther but to fall somewhat above
the similarity solution predictions. This difference between
?xperiment and theory is largely due toc the difference 1in

ﬁach numbkrs (6.85 and 7.7 for experiment, M_ -+ © for
i
]

Fheory). It 18 comparable to the shlift in shock location
hith Mach number for cones (Figure 13(a), page 109).

; _
Fhe experimental results correlate together because their

ﬁach numbers are relatively close. An additional cause for .

I

the difference between the experiment and theory 1s the out-

{
ward displacement of the flow by the growth of the viscous
?oundary layer on the experimental bodles.

éww-mwThe~effect of the order—Gg-term in the similarity
{ ’ .
ﬁolution for the shock wave shape 1is seen in Figure 15 to

i

‘increase as x/D decreases. This is expected since small

i o - - —
;valués of x/D correspond elther to small values of x/%

or to large values of D/, that is, either to points near

éthe nose of the body where the slope is larger or to bodies
Ewhich are less élender and thus have larger & vaiues. Note
! 4 .

;that the agreement of experiment with theory is better in
| B _ _

ithis region of smaller X%X/D values, as would be expected
{
%since the shock location is closer to that for infinite

Mach number for larger body slopes. The slope of Kubota's

'‘data for D/T = .0555 (circles in Figure 15) agrees very

H

iygl; with the slope of the order‘—ﬂ2 similarity solution;
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this agreement in the slope on a log-log plot indicates good
‘agreement of the power-law exponent of the physical shock
wave shape.

Additional shock wave shape data from hyperscnic flows

!

: _ !
bver power-law bodies is presented by Freeman, Cash and

! -

Bedder (20) (m = .75, M_= 8.8) and by Beaver (21) (m = .85,
j .

M_= 7.0). Although they apparently correlate in the same

!
way as the data in Figure 15, these data are not presented

ﬁhere because they fall in ranges of very large Xx/D values,
§for which the Grdervé2 term'of the shock wave shape equation
Sis negligible. For these large x/D values'the strong shock
Eassumption, corresponding to ¢ E;l/(Mw6)2,<< 1, may not be

! : . : S

Isatisfled. (See Section II-B). For-example, € = .36 for
?the 3/4-power bodies of reference 20. Thus the first-order
‘'solution in e would have to be applied to obtain useful

‘results.

Pressure distribution. The pressure distributions

{obtained by Kubota (9) and Peckham\(l9) are shown 1n Figure
16 for the same 3/4-power bodies as used for.the shock
wave shapes in Figure 15.  In addition to thé zeroth-order
éand order-62 simlilarity solution predictions, the two |
;empirical pressure distributions are presented. As seen in
‘Filgure 16, the similar}ty solutions as well ag the two
%empirical methods give pressure distributions in good agree-

mént with the experimental data for the three bodies having
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fineness ratios 1 = E/2rb(1j of about two. For these!cases
the order—62 similarity sclution 1s very nearly the same as
the zeroth-order solution except at the front of ths body.
.The Newtonlan prediction falls slightly higher than the
%imilarity solutions back of the nose region, but curves
Erepresenting tﬁese three methods are below the data points.
}

3

ESince at hypersonic speeds the viscous boundary iayer
ftends fto displace the flow outﬁard, raising the presgssure

iabove that which would occur for inviscid flow, the theore-
itical inviscid pressure levels are expected to fall slightly

fbelow those actually measured. For example, by applying a

éboundary layer displacement cqrrection to the zeroth-order
§Similaritysolution foffthe;pressurelon his fineness ratio
}2.13 body, Kubota (9) obtained excellent agreement with his
iexperimental data (Squares ih Figure 16). Since the tangent-
fcone pressure distribution falls slightly above the éxpéri-
jmental data for the three higher-fineness-ratio bodies, the
:other methods aré somewhat preferable for these cases.

: It is in the case of the body having a fineness ratio
!of nearly onhe, however, that a real difference bétween the
'methods appears. In particular, the difference beﬁween the
izeroth—ordér and order-62 pressure distributions becomes
‘'substantial. The zeroth-order result lies above the

}experimental data by an amount which increases rapidly

itpward the front of the body. On the other hand, the order-6°
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result lies below the data by an ampunt which, for most of
the body, is conly moderately larger than that for the finer
bodies. This amount 1s on thelofder of' the expected
Poundary }ayer displacement effect. It is only at the front
;f the boéy that the order—62 result begins to diverge
%arkedly from the experimental preséure distribution. .Since
?he value of the slenderness parameter is & = 0.555 for.
%his case¥*, it is notréurprisihglthat thé-order—ﬁ2 similari-
%y solution should begin to fail as the body surface angle

‘ %ncreases at the front of the bhody. This is about the same
%alue of & as the limit for good results in the wedge

?nd cone cases (Figures 12 and 13,_pages 105-112). The
Newtonién method gives ekcellent agréement with the‘éiperi~
fmental data in this case, but this must be somewhat fortuitous
%in that no correction was made to account for the boundary

flayer displacement effect. The tangent-cone method again

lies somewhat above the experimental data.

1

i
L
P
L

I

FKabota's (99 value & = .485 shown with his data corresponds
| to d&ny, = .485 as used herein, :



CHAPTER V. CONCLUSIONS

Beginning with the equations for conservation of mass,‘
congervation of mementum, and conservation of energy for
ﬁhé invisqid, two-dimensional or axisymmetric adiabatic flbwf
;of an ideal gas, similarity solutions have been found which
%ive the flow field to order~62 about power-law bodies in
&he hypersonic limit ‘Mm + «, where ¢ 1s a body slénderhess

i

.‘parameter. On the basis of this investigation the following
| .

conclusions can be made:
i 1. The order-8° solutions are independent of the

glenderness parameter §. Thus the functions expressing

the solutilons are universal .in that they apply for all values
bl L e . : o . ‘ o
;of § for which 64-<< 1. The relations between these
‘similarity functions and the physical flow variables are

%relatively simple.

2. TFor the purpose of obtalning the similarity solu-
:tioﬁs the flow équations can be formulated iIn terms of the
zlongitudinal and lateral momenta as baslic varidables instead

of the corresponding velocity components, and the similarity

:
. ifunctions can be obtained. However, the expected advantage

of avoiding singular behavior of the equations at the body
‘surface does not materialize. A
Lo . .
. 3. 1In the present formulations the value of a5, the

Tshock dlsplacement constant in the order—62 solution, goes

H
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through plus and minus infinity at about m = .817 in the
two-dimensional case and m = .653 in the axisymmetric
case, where m 1 the body power-law exponent. Because the
Singularity does not correspond to actual flow conditions

3 .
it must arise through the mathematical development. Since

%he singularity was not removed by any of the variations in
Folution procedure tried, the present results are limited to
? range Jjudged relatively free of effects from the singularity

(.85 <m < 1.0 for two-dimensional flow, .75 <m < 1.0 for

' _?Xisymmetric flow).
E 4. In comparisons with the exact soclutions for iﬁ&iscid
;flow over wedges and.circular cones, the order—62 similérity
%esults give excellent agréement for & 1less than about .4,
;corresponding to wedge or cone angles up to about 20°, 'Over
-:an even lafger rangé,the order—62 surface pressure predic~
Ttions were superior to the Newtonian pressure law. 'The
'ordernﬁz results were a significaﬁt improvement over the
zeroth-order results for body angles greater than about 12°.

; 5. In comparisons with experimental shock wave shapes
‘and surface pressure distributions for 3/4-power axisymmetric
;bodies,the‘order—ﬁz similarity solutions gave good results,
gconsideriné that Mach number and boundary layer displacement
jeffects are not included in the thecry. TFor body fineness

ratios near two, the effects of the order—62 terms are

;significant only very near the body nose, whereas for a

-
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fineness ratio near unity the order-8° terms had a large
effect over almost the entire body. These good results for
the surface pressure were obtained desplte the singular
‘behavior of some other variables at the surface.

f 6. While the order—62 similarity soluticons were
heveloped for the hypersonic limit M _ + «, the derivation
'shows that they are compatible with the order-c solutions'
of Kubota (9) and Mirels (16), where ¢ = 1/(M_3)°. The

o
order—-e solutions introduce Mach number effects,

7. While all present results were obtained for ﬂo
Ef‘low through the body surface as a boundary condltlon, it
£appears from the derivation that small amounts of bloW1ng
ior suction through the wall could be easily accommodated
; 8. It was noted that the correlation suggested by
Hornung (26) for the shock wave shape and body pressure
distrlbutlon can be applied exactly to all of the flow'
variables in the order-6° similarity solution form. This
finding suggests a method of correlating for future
;experimental data. The form of correlation aléo suggests
?a possible refinement of the derivation of the order—-8°
ésimilarity results, using the local body or shock wave slope

'as the small parameter,

i
i
|
F
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APPENDIX. ASYMPTOTIC SOLUTION IN TERMS OF

STREAM FUNCTIONS

4. Stream Function Formulation

Thiszppendix describes the development of an

b
i

hsymptotibally valid analytic solution to the flow equations

in terms of a similarity-function form of the stream func-
&ion. The solution is basically the zeroth-order solution
'of Mirels (10,16) with order-2 terms added. Tt is
ideveloped from the velocity-variable formulation, which
_hirels used, but the resultsrcan be easily relatéd to thg

i

momentum-variable formulation also.

By definition, the stream function must satisfy the

fcontinuity eduatioh (3), which may be rewritten

9 2 9 _ pv
Bx.[p(l + §%u)) + oy (pv) + @ = 0.
It
| 2,y = L 20
p(1+6u)" O—ar
r .
and | (A1)
| I W 1)
pv. = - £0 9%

then ‘a(x,r) is a stream function. It can be put into the

;similarity form

134
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- 90(71) .E(l+o')m

BlEn) = + 6%Bo, (g’ (A2)

where the zeroth-order term was given by Mirels (10) and
;he constants B and j 1n the order-62 term are to be
ﬁetermined by ccmparison with ﬁhe similarity form of the
?low variables (gquation (8)). Putting the stream function
%efining relations (Al) into similarity form (using
_Equation (A2) 'and the chain rule equations (9)):
Bl

: . . & g
p(1+62u) = — 9 4 5% “% EJ-(1+U)m

: (1+o)n° n -
and ' (A3)

f
!
!
5
1

n m_ ~(l-m)

|
‘%V~=~— (6 - —lpa'] 2_¢ 71623[% 6., - no )t gé'(1+5m)

o 1+o 0o° o 27 o

n n
fThe comparable relations from equations (8), omitting the
'order-¢ terms, are
' 2 . 2 : 2 _-2(l-m)
P(l + 4 u)—‘wo + & (w2 + vowo)m £
and _ . (Al)
ov =y o me= A 4 6200y oy e 33 4 g5t
. o'o o'e 072

r 0(sh

Comparing these two sets of equations, the exponent in the
; :

order-8° term of (A2) must be J = (3 + o)m - 2, and the

i

isimilarity funetions are related by the equations
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g ne!
0 -1 0
L (l+0)n5 ’ Yoo no (l-&o* l-30)
| BO
* = g
, w2 + vowo m2nd (A5)
_ B (3+0)m-2
bl + ¥ b, = 5 [nby - 2= 9,

i mn

H
i

The boundary conditlon on the stream functlon similarity

functions are

i

]
'__I

e (n,) = 0, 90(1)

(46)

Cfolp) = 0n 80

1
=

Solving equations (A5) for the constant B and evaluating
the similarity functions at n = 1, using eguations (46)

and (A6), gives

2
_ 2m
B=-371T 2
Eso that
i 6 . 2a
: ~ + 2 + -
g $e,m) = 120 (l+o)m _ 42 Y_i 0 g (3+0)m=2 (A7)

iIn addition, equations (A5) can be.solved for

i



65 %
y.oo= s ¢ =n - (1+0) =
© {1+o0)n 0 85
W
_ 21 Vo 4, 2 \ '
Vo i [1+0 0 * 71 529;] (AB)
2a 6 9!
_ _ 1lto 2 0 2 (3+c)m-2
ﬁz Wo 87 {“ o ¥ Y1 &1+6) 67 m %,

Or, conversely,

_ ' g
6, = (n = ¢,)¥ N
E _ (A9)
' _ (y-1)mn? |
8, = - 2a2[(3+0)m—2] ((n - ¢0)¢2 * wo(nuo - ¢2)}

S e
i

" As Mirels (10) showed fér tﬁeIZeroth—order case, the
'pressure can be related to the stream function by using the
?energy equation. Defining an entropy function w = p/pY
;the energy equation (3) in terms of the stream function

becomes

3 Bw _ W dw _ o
9r ox 89X or 0. S (A10)

This has as a solution (to order 62)

5 2a B
w= 2z ok [ e P

Y+l “y+1 0 0

(All}
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where the zeroth-order term ig Mirqls‘ zercth-order solu-

tion (10) and the order-6° term was found by trial and

error. The parameter f is defined by § = f%éé%%l and

: . . 2
varies from zero fto one as m varies from one to 376°
' |

the lowerilimit for similarity solutions. The stream func-
i !
tion expféssion for the pressure can be found from the

lentropy function, since the expression for the density is
! -
already given by equations (A8). Thus the density and pressure

are

. .
ol = tbl[l + 8%y 2 pPgm2mm) O(GQ)]

I!JC‘
! T s Y 2 2(1+0) 92 4
i i o . : Is)
pot e e Ll - 8%y (v, o+ St a, ZE) |+ 0(67)
; [(1+c)n°] [ ' A |
zand
p = plu
: 1yY
_ Y+l ‘y+1’ ‘l4o nGYeB . :
! ’ (o]

: 0
x{l + 52[%—3—“{5’—)— 2, (B 52 -~ ¥ 55) - Wc;‘ng—e(l-m)} + 0(s™)

On comparison with the similarity form of the normalized

pressure (equation (8)), this equation gives the relations
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. 1y Y
1 . 5 y-1 Y 1 Y (eo)
Fo(n) RS (Y+1) (1+c) QOYGE
oot © (a13)
p_(n) = [21F0) (8 Eg - ﬁé) - (n)JF_(n)
L YT 2o 5, Y 67 YV, (M ottl :

Mhere, again, the zeroth-order function 1s Mirels'.
%
; B. Zeroth-Order Approximate Solution
|
3

In reference 10, Mirels shows that, using equations (A§)

and (A13) for ¢_, ¢

ﬁomentum equation (11) can be approxlmated for Bd(n) << 1
! : '
oy

s and Fo, the zeroth-order lateral

o Yo

i

| e e % 8% o . : _ . (Alq)

fHe also gives the solution to thils approximatioh:

N - 1+o l+o,v-B
1 6,(n) = K (n =~ ny _) (A15)
where ‘ 1.
; | o gl oxxlyY oy-g, Y Y-E
, Ko = U= (P (57 Fo(ng)] (a16)

Mirels uses this solution to make an improved approximation

|

i

‘for the lateral momentum equation and an improved approximate

'solution
s
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?§§ : ol
5 l4+c 1+c . B 'b '
BO(Q) ~ Ko(n _ h le ) [T 1 Z(QY_B} Fo(nb} eo] (A17J

Putting this second approximation back into equations (AB)

and (Al3), he obtains the relations

b
¥
i
E

n - = -

| o Y n° 2(2y-8)F (n,)

; £ gni %6

. ~ X l+g 140y v-B b o

Yo * 3 Kolm T = M )T I Y oygiE s, ) (418)
. w g 1-¢

'FO -~ FO(TIb) + 2 le BO

bsing equations (A8) again, he obtains from these relations:

140

oDy ol (% Bnbo) ¥g My 20
& e e A ) Fo(n Yo
and - (A19)
a
Fo(ny) ~ F (n) - & My (=06 )46 (1)

These relatlons are correct to the order of eg and

therefore apply near the body surface, where Bo(nb) = 0

Kequation (A6)). Using (Al5), terms of order eg are less
' Y-8
than terms of order-8~ when n—nb < - At the
o
: (l+0)nb

point where equations (A19) are used in the numerical

sqlution to determine the values of Ny and -Fo(nb)’ the
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integration has come s0 closge fo the body that
Y-B
Y
(8/K)

n-n, <<
: b (l+0}ng

Thus the error in relations (Al7) to

{(A19) at %hat point 1s much less than the c:mc?[er*-—GLz error

H i

%of the equations being integrated, and the zeroth-order

I

lapproximate solution for Fo’ wé and ¢ (relations (Al18))

hay be used the rest of the way to the body surface.

: The zerotheofder longitudinal momentum equation can be
.iused to obtain an approximate solution for vo(n) in the

region near the body. Noting the impllcation for ﬁb(hb)
from the body boundary conditions (equation (22)), a trial

isolution is made in the form

t

)
ey

S

|

- CF_(n)
Uo(ﬂ) =D agfﬁj
‘ (A20)
vr( ) = D EQ (_é - _é)
© " IDO FO IJJ0

tPutting this into the longitudinal momentum equation (11}

gives

4
i

. F! P! F
Q Q
% D(n - ¢o)(§; - ﬁ;) + .

lo

+ 2(1%@)(D + 1) = 0.

=

Solving for D and substituting from equations (A8) and

i(AlB):
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iz
AW]

e:t
Y (.o B o _¢
B 1+g (e' Y 80 n}n
D= - '
g N )
y-1 _1y(.0 _ B o 0oy o
B{ 5 )+ (Y l)(et Y eo ﬂ} @é

But D is a constant, so an approximation must be made;
édopting Mirels' first approximation (eguation (A14)) reduces

3
D to - so that the relation (A20) for Vo becomes

Y
: y-1°
*Kto order eo; 8, << 1)

]
¥

F:(n) - 1Y y (6)Y

| - Y o - _ 2 y-1 1 o .

N SN Y - G 355 ey B (h21)
o} vy =1 n 60

+
+
3
!
i

; C.M Order—62 Functions ‘
EmumJIh pgiﬁ;ﬁﬁlé; éxﬁresé£oﬁslkﬂ8),'(Al3) and (A21) could be
Eut'intd the order-62 lateral momentum eguation (13)’t0

obtain a first-order differential equation for the order-g§2

5" However, the equation would

contalin a very large number of terms and would require a

gimilarity stream function 6

Fonsiderable amount of approximatiocn to be maqe In order
'fo‘reduce it to a form for which a solution could be
Bbtained. The approximation process 1s complicated by the
?fécts that BO oacurs to non-integral powers and that many
kerms contain B, which 1tself takes on very smail vaiues
giﬁ thelrange of interest. Consldering that the soclution i1s

only to be applied in a very small region near the body

asurface and that 82 is already of order-ﬁz, the additional

AT
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accuracy which might be ébtained probably does not justify
the additional effort regquired to produce an approximate
solution in this way. Instead, the simple linear extrapola-
kion techniques described in Section IIT.B are used to

%arry the order—62 similarity functions the short distance

1
to the body surface.



